Abstract
Ion-exchange membranes (IEMs) are utilized in numerous established, emergent, and emerging applications for water, energy, and the environment. This article reviews the five different types of IEM selectivity, namely charge, valence, specific ion, ion/solvent, and ion/uncharged solute selectivities. Technological pathways to advance the selectivities through the sorption and migration mechanisms of transport in IEM are critically analyzed. Because of the underlying principles governing transport, efforts to enhance selectivity by tuning the membrane structural and chemical properties are almost always accompanied by a concomitant decline in permeability of the desired ion. Suppressing the undesired crossover of solvent and neutral species is crucial to realize the practical implementation of several technologies, including bioelectrochemical systems, hypersaline electrodialysis desalination, fuel cells, and redox flow batteries, but the ion/solvent and ion/uncharged solute selectivities are relatively understudied, compared to the ion/ion selectivities. Deepening fundamental understanding of the transport phenomena, specifically the factors underpinning structure-property-performance relationships, will be vital to guide the informed development of more selective IEMs. Innovations in material and membrane design offer opportunities to utilize ion discrimination mechanisms that are radically different from conventional IEMs and potentially depart from the putative permeability-selectivity tradeoff. Advancements in IEM selectivity can contribute to meeting the aqueous separation needs of water, energy, and environmental challenges.

Abbreviations
- AEM:
-
anion exchange membrane
- CEM:
-
cation exchange membrane
- IEM:
-
ion-exchange membrane
- NASICON:
-
Na super ionic conductor
- c :
-
ion concentration
- Δc m :
-
concentration difference across membrane
- e :
-
elementary charge
- f w :
-
water volume fraction
- k B :
-
Boltzmann constant
- Δl :
-
membrane thickness
- t :
-
transport number
- u :
-
mobility
- v :
-
velocity of water in membrane
- z :
-
ion valence
- A :
-
osmotic water permeability coefficient
- B w :
-
characteristic parameter for water transport
- B s :
-
characteristic parameter for solute transport
- D :
-
diffusivity
- ΔE i :
-
binding free energy
- F :
-
Faraday constant
- ΔG hyd :
-
Gibbs hydration energy
- J :
-
flux
- K :
-
sorption coefficient
- ΔP :
-
hydrostatic pressure difference across membrane
- R :
-
gas constant
- S:
-
separation selectivity
- T :
-
absolute temperature
- γ :
-
activity coefficient
- ε :
-
permittivity
- κ :
-
ionic conductivity
- Δπ :
-
osmotic pressure difference across membrane
- φ :
-
electric potential
- Δφ D :
-
Donnan potential
- Δφ m :
-
electric potential difference within membrane
- ct:
-
counterion
- co:
-
co-ion
- eo:
-
electro-osmosis
- fix:
-
membrane fixed charges
- i :
-
species i
- j :
-
species j
- m:
-
membrane phase
- os:
-
osmosis
- s:
-
bulk solution phase
- w:
-
water
- 1:
-
upstream solution-membrane interface
- 2:
-
downstream solution-membrane interface
- I:
-
monovalent counterion
- II:
-
divalent counterion
- III:
-
trivalent counterion
References
Abdollahzadeh M, Chai M, Hosseini E, Zakertabrizi M, Mohammad M, Ahmadi H, Hou J, Lim S, Habibnejad Korayem A, Chen V, Asadnia M, Razmjou A (2022). Designing angstrom-scale asymmetric MOF-on-MOF cavities for high monovalent ion selectivity. Advanced Materials, 34(9): 2107878
Abraham J, Vasu K S, Williams C D, Gopinadhan K, Su Y, Cherian C T, Dix J, Prestat E, Haigh S J, Grigorieva I V, Carbone P, Geim A K, Nair R R (2017). Tunable sieving of ions using graphene oxide membranes. Nature Nanotechnology, 12(6): 546–550
abu-Rjal R, Chinaryan V, Bazant M Z, Rubinstein I, Zaltzman B (2014). Effect of concentration polarization on permselectivity. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 89(1): 012302
Acar E T, Buchsbaum S F, Combs C, Fornasiero F, Siwy Z S (2019). Biomimetic potassium-selective nanopores. Science Advances, 5(2): eaav2568
Ahdab Y D, Rehman D, Lienhard J H (2020). Brackish water desalination for greenhouses: Improving groundwater quality for irrigation using monovalent selective electrodialysis reversal. Journal of Membrane Science, 610: 118072
Ahdab Y D, Rehman D, Schucking G, Barbosa M, Lienhard J H (2021). Treating irrigation water using high-performance membranes for monovalent selective electrodialysis. ACS ES&T Water, 1(1): 117–124
Ahmadi H, Zakertabrizi M, Hosseini E, Cha-Umpong W, Abdollahzadeh M, Korayem A H, Chen V, Shon H K, Asadnia M, Razmjou A (2022). Heterogeneous asymmetric passable cavities within graphene oxide nanochannels for highly efficient lithium sieving. Desalination, 538: 115888
Ahmed M, Dincer I (2011). A review on methanol crossover in direct methanol fuel cells: challenges and achievements. International Journal of Energy Research, 35(14): 1213–1228
Alvial-Hein G, Mahandra H, Ghahreman A (2021). Separation and recovery of cobalt and nickel from end of life products via solvent extraction technique: a review. Journal of Cleaner Production, 297: 126592
Amiri H, Khosravi M, Ejeian M, Razmjou A (2021). Designing ionselective membranes for vanadium redox flow batteries. Advanced Materials Technologies, 6(10): 2001308
Amsden B (1998). Solute diffusion within hydrogels: mechanisms and models. Macromolecules, 31(23): 8382–8395
An S S, Liu J, Wang J H, Wang M C, Ji Z Y, Qi S S, Yuan J S (2019). Synthesis and characterization of a plat sheet potassium ion sieve membrane and its performances for separation potassium. Separation and Purification Technology, 212: 834–842
Baker R W (2012). Membrane Technology and Applications. Chichester: John Wiley & Sons
Bakonyi P, Kook L, Kumar G, Toth G, Rozsenberszki T, Nguyen D D, Chang S W, Zhen G Y, Belafi-Bako K, Nemestothy N (2018). Architectural engineering of bioelectrochemical systems from the perspective of polymeric membrane separators: a comprehensive update on recent progress and future prospects. Journal of Membrane Science, 564: 508–522
Barboiu M (2018). Encapsulation versus self-aggregation toward highly selective artificial K+ channels. Accounts of Chemical Research, 51(11): 2711–2718
Barboiu M, Le Duc Y, Gilles A, Cazade P A, Michau M, Legrand Y M, Van Der Lee A, Coasne B, Parvizi P, Post J, Fyles T (2014). An artificial primitive mimic of the Gramicidin: a channel. Nature Communications, 5: 4142
Bard A J, Faulkner L R (2001). Electrochemical Methods: Fundamentals and Applications (2nd ed.). New York: Wiley
Barnett J W, Bilchak C R, Wang Y W, Benicewicz B C, Murdock L A, Bereau T, Kumar S K (2020). Designing exceptional gas-separation polymer membranes using machine learning. Science Advances, 6(20): eaaz4301
Bedrov D, Smith G D, Davande H, Li L (2008). Passive transport of C60 fullerenes through a lipid membrane: a molecular dynamics simulation study. Journal of Physical Chemistry B, 112(7): 2078–2084
Ben-David A, Bason S, Jopp J, Oren Y, Freger V (2006a). Partitioning of organic solutes between water and polyamide layer of RO and NF membranes: correlation to rejection. Journal of Membrane Science, 281(1–2): 480–490
Ben-David A, Oren Y, Freger V (2006b). Thermodynamic factors in partitioning and rejection of organic compounds by polyamide composite membranes. Environmental Science & Technology, 40(22): 7023–7028
Berezina N P, Kononenko N A, Dyomina O A, Gnusin N P (2008). Characterization of ion-exchange membrane materials: properties vs structure. Advances in Colloid and Interface Science, 139(1–2): 3–28
Bragg B J, Casey J E, Trout J B (1994). Primary Battery Design and Safety Guidelines Handbook. Houston, Texas: NASA Reference Publication
Cath T Y, Childress A E, Elimelech M (2006). Forward osmosis: Principles, applications, and recent developments. Journal of Membrane Science, 281(1–2): 70–87
Chaudhury S, Bhattacharyya A, Goswami A (2014). Electrodriven ion transport through crown ether-Nafion composite membrane: enhanced selectivity of Cs+ over Na+ by ion gating at the surface. Industrial & Engineering Chemistry Research, 53(21): 8804–8809
Chen G Q, Wei K, Hassanvand A, Freeman B D, Kentish S E (2020). Single and binary ion sorption equilibria of monovalent and divalent ions in commercial ion exchange membranes. Water Research, 175: 115681
Chen L, Zhang R Y, He P, Kang Q J, He Y L, Tao W Q (2018). Nanoscale simulation of local gas transport in catalyst layers of proton exchange membrane fuel cells. Journal of Power Sources, 400: 114–125
Chen S, Luo H, Hou Y, Liu G, Zhang R, Qin B (2015). Comparison of the removal of monovalent and divalent cations in the microbial desalination cell. Frontiers of Environmental Science & Engineering, 9(2): 317–323
Chen X, Boo C, Yip N Y (2021). Influence of solute molecular diameter on permeability-selectivity tradeoff of thin-film composite polyamide membranes in aqueous separations. Water Research, 201: 117311
Chu S (2011). Critical Materials Strategy. U.S. Department of Energy, Darby: DIANE publishing
Clark S B, Buchanan M, Wilmarth B (2016). Basic research needs for environmental management. Richland, WA (USA): Pacific Northwest National Lab. (PNNL)
Collong S, Kouta R (2015). Fault tree analysis of proton exchange membrane fuel cell system safety. International Journal of Hydrogen Energy, 40(25): 8248–8260
Cretin M, Fabry P (1997). Detection and selectivity properties of Li+-ion-selective electrodes based on NASICON-type ceramics. Analytica Chimica Acta, 354(1–3): 291–299
Cruz G P T, Gaspillo P D, Takahashi K (2000). Selective transport of Li-Na and Li-K binary systems across a cation exchange membrane under an electric field. Separation and Purification Technology, 19(1–2): 21–26
Cussler E L, Aris R, Bhown A (1989). On the limits of facilitated diffusion. Journal of Membrane Science, 43(2–3): 149–164
Darling R M, Weber A Z, Tucker M C, Perry M L (2016). The influence of electric field on crossover in redox-flow batteries. Journal of the Electrochemical Society, 163(1): A5014–A5022
De Marco R, Clarke G, Pejcic B (2007). Ion-selective electrode potentiometry in environmental analysis. Electroanalysis, 19(19–20): 1987–2001
Deng H N, Zhao S J, Meng Q Q, Zhang W, Hu B S (2014). A novel surface ion-imprinted cation-exchange membrane for selective separation of copper ion. Industrial & Engineering Chemistry Research, 53(39): 15230–15236
Devanathan R, Venkatnathan A, Dupuis M (2007). Atomistic simulation of nafion membrane: I. Effect of hydration on membrane nanostructure. Journal of Physical Chemistry B, 111(28): 8069–8079
Dischinger S M, Gupta S, Carter B M, Miller D J (2020). Transport of neutral and charged solutes in imidazolium-functionalized poly(phenylene oxide) membranes for artificial photosynthesis. Industrial & Engineering Chemistry Research, 59(12): 5257–5266
Długołęcki P, Anet B, Metz S J, Nijmeijer K, Wessling M (2010a). Transport limitations in ion exchange membranes at low salt concentrations. Journal of Membrane Science, 346(1): 163–171
Długołęcki P, Nymeijer K, Metz S, Wessling M (2008). Current status of ion exchange membranes for power generation from salinity gradients. Journal of Membrane Science, 319(1–2): 214–222
Długołęcki P, Ogonowski P, Metz S J, Saakes M, Nijmeijer K, Wessling M (2010b). On the resistances of membrane, diffusion boundary layer and double layer in ion exchange membrane transport. Journal of Membrane Science, 349(1–2): 369–379
Dresner L (1972). Stability of the extended Nernst-Planck equations in the description of hyperfiltration through ion-exchange membranes. Journal of Physical Chemistry, 76(16): 2256–2267
Dresner L (1974). Ionic transport through porous ion-exchange membranes in hyperfiltration and piezodialysis. Desalination, 15(1): 109–125
DuChanois R M, Heiranian M, Yang J, Porter C J, Li Q L, Zhang X, Verduzco R, Elimelech M (2022). Designing polymeric membranes with coordination chemistry for high-precision ion separations. Science Advances, 8(9): eabm9436
DuChanois R M, Porter C J, Violet C, Verduzco R, Elimelech M (2021). Membrane materials for selective ion separations at the water-energy nexus. Advanced Materials, 33(38): 2101312
Elser J, Bennett E (2011). A broken biogeochemical cycle. Nature, 478(7367): 29–31
Epsztein R, DuChanois R M, Ritt C L, Noy A, Elimelech M (2020). Towards single-species selectivity of membranes with subnanometre pores. Nature Nanotechnology, 15(6): 426–436
Erisman J W, Sutton M A, Galloway J, Klimont Z, Winiwarter W (2008). How a century of ammonia synthesis changed the world. Nature Geoscience, 1(10): 636–639
Ersöz M (1995). Diffusion and selective transport of alkali cations on cation-exchange membrane. Separation Science and Technology, 30(18): 3523–3533
Fan H, Huang Y, Billinge I H, Bannon S M, Geise G M, Yip N Y (2022). Counterion mobility in ion-exchange membranes: spatial effect and valency-dependent electrostatic interaction. ACS ES&T Engineering, 2: 1274–1286
Fan H, Huang Y, Yip N Y (2020). Advancing the conductivity-permselectivity tradeoff of electrodialysis ion-exchange membranes with sulfonated CNT nanocomposites. Journal of Membrane Science, 610: 118259
Fan H, Yip N Y (2019). Elucidating conductivity-permselectivity tradeoffs in electrodialysis and reverse electrodialysis by structure-property analysis of ion-exchange membranes. Journal of Membrane Science, 573: 668–681
Fetanat M, Keshtiara M, Keyikoglu R, Khataee A, Daiyan R, Razmjou A (2021). Machine learning for design of thin-film nanocomposite membranes. Separation and Purification Technology, 270: 118383
Fonseca A D, Crespo J G, Almeida J S, Reis M A (2000). Drinking water denitrification using a novel ion-exchange membrane bioreactor. Environmental Science & Technology, 34(8): 1557–1562
Fountain M S, Kurath D E, Sevigny G J, Poloski A P, Pendleton J, Balagopal S, Quist M, Clay D (2008). Caustic recycle from Hanford tank waste using NaSICON ceramic membranes. Separation Science and Technology, 43(9–10): 2321–2342
Freeman B D (1999). Basis of permeability/selectivity tradeoff relations in polymeric gas separation membranes. Macromolecules, 32(2): 375–380
Freger V (2020). Ion partitioning and permeation in charged low-T* membranes. Advances in Colloid and Interface Science, 277: 102107
Ge L, Wu B, Yu D B, Mondal A N, Hou L X, Afsar N U, Li Q H, Xu T T, Miao J B, Xu T W (2017). Monovalent cation perm-selective membranes (MCPMs): new developments and perspectives. Chinese Journal of Chemical Engineering, 25(11): 1606–1615
Geise G M (2020). Experimental characterization of polymeric membranes for selective ion transport. Current Opinion in Chemical Engineering, 28: 36–42
Geise G M, Curtis A J, Hatzell M C, Hickner M A, Logan B E (2014a). Salt concentration differences alter membrane resistance in reverse electrodialysis stacks. Environmental Science & Technology Letters, 1(1): 36–39
Geise G M, Hickner M A, Logan B E (2013). Ionic resistance and permselectivity tradeoffs in anion exchange membranes. ACS Applied Materials & Interfaces, 5(20): 10294–10301
Geise G M, Park H B, Sagle A C, Freeman B D, Mcgrath J E (2011). Water permeability and water/salt selectivity tradeoff in polymers for desalination. Journal of Membrane Science, 369(1–2): 130–138
Geise G M, Paul D R, Freeman B D (2014b). Fundamental water and salt transport properties of polymeric materials. Progress in Polymer Science, 39(1): 1–42
Gilles A, Barboiu M (2016). Highly selective artificial K+ channels: an example of selectivity-induced transmembrane potential. Journal of the American Chemical Society, 138(1): 426–432
Goswami A, Acharya A, Pandey A K (2001). Study of self-diffusion of monovalent and divalent cations in Nafion-117 ion-exchange membrane. Journal of Physical Chemistry B, 105(38): 9196–9201
Gouaux E, MacKinnon R (2005). Principles of selective ion transport in channels and pumps. Science, 310(5753): 1461–1465
Grzegorzek M, Majewska-Nowak K, Ahmed A E (2020). Removal of fluoride from multicomponent water solutions with the use of monovalent selective ion-exchange membranes. Science of the Total Environment, 722: 137681
Güler E, Elizen R, Vermaas D A, Saakes M, Nijmeijer K (2013). Performance-determining membrane properties in reverse electrodialysis. Journal of Membrane Science, 446: 266–276
Güler E, Zhang Y L, Saakes M, Nijmeijer K (2012). Tailor-made anion-exchange membranes for salinity gradient power generation using reverse electrodialysis. ChemSusChem, 5(11): 2262–2270
Guo Y, Ying Y L, Mao Y Y, Peng X S, Chen B L (2016). Polystyrene sulfonate threaded through a metal-organic framework membrane for fast and selective lithium-ion separation. Angewandte Chemie International Edition, 55(48): 15120–15124
Han L, Galier S, Roux-De Balmann H (2015). Ion hydration number and electro-osmosis during electrodialysis of mixed salt solution. Desalination, 373: 38–46
Han L, Galier S, Roux-De Balmann H (2016). Transfer of neutral organic solutes during desalination by electrodialysis: influence of the salt composition. Journal of Membrane Science, 511: 207–218
Harnisch F, Wirth S, Schroder U (2009). Effects of substrate and metabolite crossover on the cathodic oxygen reduction reaction in microbial fuel cells: Platinum vs. iron(II) phthalocyanine based electrodes. Electrochemistry Communications, 11(11): 2253–2256
Heintz A, Wiedemann E, Ziegler J (1997). Ion exchange diffusion in electromembranes and its description using the Maxwell-Stefan formalism. Journal of Membrane Science, 137(1–2): 121–132
Heinzel A, Barragan V M (1999). A review of the state-of-the-art of the methanol crossover in direct methanol fuel cells. Journal of Power Sources, 84(1): 70–74
Helfferich F (1995). Ion Exchange. Mineola: Dover Publications
Huang Z, Zhu J, Qiu R J, Ruan J J, Qiu R L (2019). A cleaner and energy-saving technology of vacuum step-by-step reduction for recovering cobalt and nickel from spent lithium-ion batteries. Journal of Cleaner Production, 229: 1148–1157
Ismail A F, Matsuura T (2018). Progress in transport theory and characterization method of Reverse Osmosis (RO) membrane in past fifty years. Desalination, 434: 2–11
Jarin M, Dou Z, Gao H, Chen Y, Xie X (2023). Salinity exchange between seawater/brackish water and domestic wastewater through electrodialysis for potable water. Frontiers of Environmental Science & Engineering, 17(2): 16
Jaroszek H, Dydo P (2016). Ion-exchange membranes in chemical synthesis: a review. Open Chemistry, 14(1): 1–19
Kamcev J (2016). Ion sorption and transport in ion exchange membranes: importance of counter-ion condensation. Dissertation for the Doctoral Degree. Austin: The University of Texas at Austin
Kamcev J (2021). Reformulating the permselectivity-conductivity tradeoff relation in ion-exchange membranes. Journal of Polymer Science, 59(21): 2510–2520
Kamcev J, Paul D R, Manning G S, Freeman B D (2017). Predicting salt permeability coefficients in highly swollen, highly charged ion exchange membranes. ACS Applied Materials & Interfaces, 9(4): 4044–4056
Kamcev J, Paul D R, Manning G S, Freeman B D (2018a). Ion diffusion coefficients in ion exchange membranes: significance of counterion condensation. Macromolecules, 51(15): 5519–5529
Kamcev J, Sujanani R, Jang E S, Yan N, Moe N, Paul D R, Freeman B D (2018b). Salt concentration dependence of ionic conductivity in ion exchange membranes. Journal of Membrane Science, 547: 123–133
Kanani D M, Fissell W H, Roy S, Dubnisheva A, Fleischman A, Zydney A L (2010). Permeability-selectivity analysis for ultrafiltration: Effect of pore geometry. Journal of Membrane Science, 349(1–2): 405–410
Karal M A, Islam M K, Mahbub Z B (2020). Study of molecular transport through a single nanopore in the membrane of a giant unilamellar vesicle using COMSOL simulation. European Biophysics Journal, 49(1): 59–69
Kato S, Nagahama K, Asai H (1992). Permeation rates of aqueous alcohol-solutions in pervaporation through Nafion membranes. Journal of Membrane Science, 72(1): 31–41
Kim J, Tsouris C, Mayes R T, Oyola Y, Saito T, Janke C J, Dai S, Schneider E, Sachde D (2013). Recovery of uranium from seawater: a review of current status and future research needs. Separation Science and Technology, 48(3): 367–387
Kim J M, Beckingham B S (2021). Transport and co-transport of carboxylate ions and alcohols in cation exchange membranes. Journal of Polymer Science, 59(21): 2545–2558
Kim J M, Lin Y H, Hunter B, Beckingham B S (2021a). Transport and co-transport of carboxylate ions and ethanol in anion exchange membranes. Polymers, 13(17): 2885
Kim J M, Mazumder A, Li J, Jiang Z H, Beckingham B S (2022a). Impact of PEGMA on transport and co-transport of methanol and acetate in PEGDA-AMPS cation exchange membranes. Journal of Membrane Science, 642: 119950
Kim J R, Jung S H, Regan J M, Logan B E (2007). Electricity generation and microbial community analysis of alcohol powered microbial fuel cells. Bioresource Technology, 98(13): 2568–2577
Kim N, Jeong S, Go W, Kim Y (2022b). A Na+ ion-selective desalination system utilizing a NASICON ceramic membrane. Water Research, 215: 118250
Kim S, Nguyen B T D, Ko H, Kim M, Kim K, Nam S, Kim J F (2021b). Accurate evaluation of hydrogen crossover in water electrolysis systems for wetted membranes. International Journal of Hydrogen Energy, 46(29): 15135–15144
Kim Y, Walker W S, Lawler D F (2012). Competitive separation of divs. mono-valent cations in electrodialysis: Effects of the boundary layer properties. Water Research, 46(7): 2042–2056
Kingsbury R, Wang J, Coronell O (2020). Comparison of water and salt transport properties of ion exchange, reverse osmosis, and nanofiltration membranes for desalination and energy applications. Journal of Membrane Science, 604: 117998
Kingsbury R S, Coronell O (2021). Modeling and validation of concentration dependence of ion exchange membrane permselectivity: Significance of convection and Manning’s counter-ion condensation theory. Journal of Membrane Science, 620: 118411
Kitto D, Kamcev J (2022). Manning condensation in ion exchange membranes: a review on ion partitioning and diffusion models. Journal of Polymer Science, 2022: 1–45
Knauth P, Pasquini L, Narducci R, Sgreccia E, Becerra-Arciniegas R A, Di Vona M L (2021). Effective ion mobility in anion exchange ionomers: relations with hydration, porosity, tortuosity, and percolation. Journal of Membrane Science, 617: 118622
Kocherginsky N M, Yang Q, Seelam L (2007). Recent advances in supported liquid membrane technology. Separation and Purification Technology, 53(2): 171–177
Koh D Y, Mccool B A, Deckman H W, Lively R P (2016). Reverse osmosis molecular differentiation of organic liquids using carbon molecular sieve membranes. Science, 353(6301): 804–807
Kong L, Palacios E, Guan X, Shen M, Liu X (2022). Mechanisms for enhanced transport selectivity of like-charged ions in hydrophobic-polymer-modified ion-exchange membranes. Journal of Membrane Science, 658: 120645
Kreuer K D (2014). Ion conducting membranes for fuel cells and other electrochemical devices. Chemistry of Materials, 26(1): 361–380
Kreuer K D, Münchinger A (2021). Fast and selective ionic transport: from ion-conducting channels to ion exchange membranes for flow batteries. Annual Review of Materials Research, 51: 21–46
Kreuer K D, Paddison S J, Spohr E, Schuster M (2004). Transport in proton conductors for fuel-cell applications: Simulations, elementary reactions, and phenomenology. Chemical Reviews, 104(10): 4637–4678
Krödel M, Carter B M, Rall D, Lohaus J, Wessling M, Miller D J (2020). Rational design of ion exchange membrane material properties limits the crossover of CO2 reduction products in artificial photosynthesis devices. ACS Applied Materials & Interfaces, 12(10): 12030–12042
Lakshminarayanaiah N (1965). Transport phenomena in artificial membranes. Chemical Reviews, 65(5): 491–565
Li C Y, Chen H, Chen Q S, Shi H, Yang X H, Wang K M, Liu J B (2020). Lipophilic G-quadruplex isomers as biomimetic ion channels for conformation-dependent selective transmembrane transport. Analytical Chemistry, 92(14): 10169–10176
Li H, Tang Y H, Wang Z W, Shi Z, Wu S H, Song D T, Zhang J L, Fatih K, Zhang J J, Wang H J, Liu Z S, Abouatallah R, Mazza A (2008). A review of water flooding issues in the proton exchange membrane fuel cell. Journal of Power Sources, 178(1): 103–117
Li W W, Sheng G P, Liu X W, Yu H Q (2011). Recent advances in the separators for microbial fuel cells. Bioresource Technology, 102(1): 244–252
Li W W, Yu H Q, Rittmann B E (2015). Chemistry: reuse water pollutants. Nature, 528(7580): 29–31
Li X Y, Hill M R, Wang H T, Zhang H C (2021). Metal-organic framework-based ion-selective membranes. Advanced Materials Technologies, 6(10): 2000790
Liu F Q, Lu G Q, Wang C Y (2006). Low crossover of methanol and water through thin membranes in direct methanol fuel cells. Journal of the Electrochemical Society, 153(3): A543–A553
Liu H, She Q H (2022). Influence of membrane structure-dependent water transport on conductivity-permselectivity trade-off and salt/water selectivity in electrodialysis: Implications for osmotic electrodialysis using porous ion exchange membranes. Journal of Membrane Science, 650: 120398
Liu Y C, Yeh L H, Zheng M J, Wu K C W (2021). Highly selective and high-performance osmotic power generators in subnanochannel membranes enabled by metal-organic frameworks. Science Advances, 7(10): eabe9924
Luo H X, Agata W A S, Geise G M (2020). Connecting the ion separation factor to the sorption and diffusion selectivity of ion exchange membranes. Industrial & Engineering Chemistry Research, 59(32): 14189–14206
Luo T, Abdu S, Wessling M (2018). Selectivity of ion exchange membranes: a review. Journal of Membrane Science, 555: 429–454
Marchetti P, Jimenez Solomon M F, Szekely G, Livingston A G (2014). Molecular separation with organic solvent nanofiltration: a critical review. Chemical Reviews, 114(21): 10735–10806
Marchetti P, Livingston A G (2015). Predictive membrane transport models for organic solvent nanofiltration: How complex do we need to be? Journal of Membrane Science, 476: 530–553
Matos C T, Fortunato R, Velizarov S, Reis M A M, Crespo J G (2008). Removal of mono-valent oxyanions from water in an ion exchange membrane bioreactor: Influence of membrane permselectivity. Water Research, 42(6–7): 1785–1795
Matos C T, Velizarov S, Crespo J G, Reis M A M (2006). Simultaneous removal of perchlorate and nitrate from drinking water using the ion exchange membrane bioreactor concept. Water Research, 40(2): 231–240
Mauvy F, Gondran C, Siebert E (1999). Potentiometric selectivity and impedance characteristics of a NASICON-based ion selective electrode. Electrochimica Acta, 44(13): 2219–2226
McCartney S N, Watanabe N S, Yip N Y (2021). Emerging investigator series: thermodynamic and energy analysis of nitrogen and phosphorous recovery from wastewaters. Environmental Science. Water Research & Technology, 7(11): 2075–2088
Meares P (1986). Synthetic Membranes: Science, Engineering and Applications. Dordrecht: Springer, 169–179
Medford A J, Vojvodic A, Hummelshoj J S, Voss J, Abild-Pedersen F, Studt F, Bligaard T, Nilsson A, Norskov J K (2015). From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis. Journal of Catalysis, 328: 36–42
Mehta A, Zydney A L (2005). Permeability and selectivity analysis for ultrafiltration membranes. Journal of Membrane Science, 249(1–2): 245–249
Miyoshi H (1997). Diffusion coefficients of ions through ion-exchange membranes for Donnan dialysis using ions of the same valence. Chemical Engineering Science, 52(7): 1087–1096
Mubita T, Porada S, Aerts P, Van Der Wal A (2020). Heterogeneous anion exchange membranes with nitrate selectivity and low electrical resistance. Journal of Membrane Science, 607: 118000
Münchinger A, Kreuer K D (2019). Selective ion transport through hydrated cation and anion exchange membranes I. The effect of specific interactions. Journal of Membrane Science, 592: 117372
National Academies of Sciences E, Medicine (2019). A Research Agenda for Transforming Separation Science. Washington, DC National Academies Press
Nie X Y, Sun S Y, Song X F, Yu J G (2017a). Further investigation into lithium recovery from salt lake brines with different feed characteristics by electrodialysis. Journal of Membrane Science, 530: 185–191
Nie X Y, Sun S Y, Sun Z, Song X F, Yu J G (2017b). Ion-fractionation of lithium ions from magnesium ions by electrodialysis using monovalent selective ion-exchange membranes. Desalination, 403: 128–135
Nightingale E R Jr (1959). Phenomenological theory of ion solvation — effective radii of hydrated ions. Journal of Physical Chemistry, 63(9): 1381–1387
Noskov S Y, Berneche S, Roux B (2004). Control of ion selectivity in potassium channels by electrostatic and dynamic properties of carbonyl ligands. Nature, 431(7010): 830–834
Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office (2020). Critical Materials Rare Earths Supply Chain: A Situational White Paper. Washington, DC: U.S. Department of Energy
Oh K, Moazzam M, Gwak G, Ju H (2019). Water crossover phenomena in all-vanadium redox flow batteries. Electrochimica Acta, 297: 101–111
Ohya H, Masaoka K, Aihara M, Negishi Y (1998). Properties of new inorganic membranes prepared by metal alkoxide methods. Part III: New inorganic lithium permselective ion exchange membrane. Journal of Membrane Science, 146(1): 9–13
Parhi P K (2013). Supported liquid membrane principle and its practices: a short review. Journal of Chemistry, 2013: 618236
Park H B, Kamcev J, Robeson L M, Elimelech M, Freeman B D (2017). Maximizing the right stuff: The trade-off between membrane permeability and selectivity. Science, 356(6343): eaab0530
Parnamae R, Mareev S, Nikonenko V, Melnikov S, Sheldeshov N, Zabolotskii V, Hamelers H V M, Tedesco M (2021). Bipolar membranes: a review on principles, latest developments, and applications. Journal of Membrane Science, 617: 118538
Paul D R (2004). Reformulation of the solution-diffusion theory of reverse osmosis. Journal of Membrane Science, 241(2): 371–386
Paul M, Park H B, Freeman B D, Roy A, Mcgrath J E, Riffle J S (2008). Synthesis and crosslinking of partially disulfonated poly(arylene ether sulfone) random copolymers as candidates for chlorine resistant reverse osmosis membranes. Polymer, 49(9): 2243–2252
Porada S, Van Egmond W J, Post J W, Saakes M, Hamelers H V M (2018). Tailoring ion exchange membranes to enable low osmotic water transport and energy efficient electrodialysis. Journal of Membrane Science, 552: 22–30
Qian Z X, Miedema H, Pintossi D, Ouma M, Sudholter E J R (2022). Selective removal of sodium ions from greenhouse drainage water: a combined experimental and theoretical approach. Desalination, 536: 115844
Qian Z X, Miedema H, Sahin S, De Smet L C P M, Sudholter E J R (2020). Separation of alkali metal cations by a supported liquid membrane (SLM) operating under electro dialysis (ED) conditions. Desalination, 495: 114631
Ran J, Wu L, He Y B, Yang Z J, Wang Y M, Jiang C X, Ge L, Bakangura E, Xu T W (2017). Ion exchange membranes: new developments and applications. Journal of Membrane Science, 522: 267–291
Razmjou A, Asadnia M, Hosseini E, Habibnejad Korayem A, Chen V (2019). Design principles of ion selective nanostructured membranes for the extraction of lithium ions. Nature Communications, 10(1): 1–15
Ren C L, Shen J, Zeng H Q (2017). Combinatorial evolution of fast-conducting highly selective K+-channels via modularly tunable directional assembly of crown ethers. Journal of the American Chemical Society, 139(36): 12338–12341
Ren X M, Gottesfeld S (2001). Electro-osmotic drag of water in poly(perfluorosulfonic acid) membranes. Journal of the Electrochemical Society, 148(1): A87–A93
Ritt C L, Liu M J, Pham T A, Epsztein R, Kulik H J, Elimelech M (2022). Machine learning reveals key ion selectivity mechanisms in polymeric membranes with subnanometer pores. Science Advances, 8(2): eabl5771
Robeson L M (2008). The upper bound revisited. Journal of Membrane Science, 320(1–2): 390–400
Robinson R A, Stokes R H (2002). Electrolyte Solutions (2nd revised ed.). Mineola: Dover Publications
Rommerskirchen A, Roth H, Linnartz C J, Egidi F, Kneppeck C, Roghmans F, Wessling M (2021). Mitigating water crossover by crosslinked coating of cation-exchange membranes for brine concentration. Advanced Materials Technologies, 6(10): 2100202
Rottiers T, Ghyselbrecht K, Meesschaert B, Van der Bruggen B, Pinoy L (2014). Influence of the type of anion membrane on solvent flux and back diffusion in electrodialysis of concentrated NaCl solutions. Chemical Engineering Science, 113: 95–100
Rubinstein I (1990). Theory of concentration polarization effects in electrodialysis on counter-ion selectivity of ion-exchange membranes with differing counter-ion distribution coefficients. Journal of the Chemical Society, Faraday Transactions, 86(10): 1857–1861
Russell S T, Pereira R, Vardner J T, Jones G N, Dimarco C, West A C, Kumar S K (2020). Hydration effects on the permselectivity-conductivity trade-off in polymer electrolytes. Macromolecules, 53(3): 1014–1023
Sachar H S, Zofchak E S, Marioni N, Zhang Z, Kadulkar S, Duncan T J, Freeman B D, Ganesan V (2022). Impact of cation–ligand interactions on the permselectivity of ligand-functionalized polymer membranes in single and mixed salt systems. Macromolecules, 55: 4821–4831
San Román M F, Bringas E, Ibanez R, Ortiz I (2010). Liquid membrane technology: fundamentals and review of its applications. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 85(1): 2–10
Saracco G (1997). Transport properties of monovalent-ion-permselective membranes. Chemical Engineering Science, 52(17): 3019–3031
Sata T (2000). Studies on anion exchange membranes having permselectivity for specific anions in electrodialysis — effect of hydrophilicity of anion exchange membranes on permselectivity of anions. Journal of Membrane Science, 167(1): 1–31
Sata T (2004). Ion Exchange Membranes Preparation, Characterization, Modification and Application. Cambridge: Royal Society of Chemistry
Sata T, Sata T, Yang W (2002). Studies on cation-exchange membranes having permselectivity between cations in electrodialysis. Journal of Membrane Science, 206(1–2): 31–60
Shao P, Huang R (2007). Polymeric membrane pervaporation. Journal of Membrane Science, 287(2): 162–179
Sharma P P, Yadav V, Rajput A, Gupta H, Saravaia H, Kulshrestha V (2020). Sulfonated poly (ether ether ketone) composite cation exchange membrane for selective recovery of lithium by electrodialysis. Desalination, 496: 114755
Shehzad M A, Wang Y M, Yasmin A, Ge X L, He Y B, Liang X, Zhu Y, Hu M, Xiao X L, Ge L, Jiang C X, Yang Z J, Guiver M D, Wu L, Xu T W (2019). Biomimetic nanocones that enable high ion permselectivity. Angewandte Chemie International Edition, 58(36): 12646–12654
Shen Y X, Saboe P O, Sines I T, Erbakan M, Kumar M (2014). Biomimetic membranes: a review. Journal of Membrane Science, 454: 359–381
Sheng C J, Wijeratne S, Cheng C, Baker G L, Bruening M L (2014). Facilitated ion transport through polyelectrolyte multilayer films containing metal-binding ligands. Journal of Membrane Science, 459: 169–176
Siddiqui M U, Arif A F M, Bashmal S (2016). Permeability-selectivity analysis of microfiltration and ultrafiltration membranes: Effect of pore size and shape distribution and membrane stretching. Membranes (Basel), 6(3): 40
Silva P, Han S J, Livingston A G (2005). Solvent transport in organic solvent nanofiltration membranes. Journal of Membrane Science, 262(1–2): 49–59
Song Y M, Pan F S, Li Y, Quan K D, Jiang Z Y (2019). Mass transport mechanisms within pervaporation membranes. Frontiers of Chemical Science and Engineering, 13(3): 458–474
Spiegler K S (1958). Transport processes in ionic membranes. Transactions of the Faraday Society, 54(9): 1408–1428
Strathmann H (2004). Ion-Exchange Membrane Separation Processes. Amsterdam: Elsevier
Strathmann H (2010). Electrodialysis, a mature technology with a multitude of new applications. Desalination, 264(3): 268–288
Strathmann H, Grabowski A, Eigenberger G (2013). Ion-exchange membranes in the chemical process industry. Industrial & Engineering Chemistry Research, 52(31): 10364–10379
Sujanani R, Landsman M R, Jiao S, Moon J D, Shell M S, Lawler D F, Katz L E, Freeman B D (2020). Designing solute-tailored selectivity in membranes: perspectives for water reuse and resource recovery. ACS Macro Letters, 9(11): 1709–1717
Sun P, Zheng F, Zhu M, Song Z, Wang K, Zhong M, Wu D, Little R B, Xu Z, Zhu H (2014). Selective trans-membrane transport of alkali and alkaline earth cations through graphene oxide membranes based on cation-π interactions. ACS Nano, 8(1): 850–859
Takamuku S, Wohlfarth A, Manhart A, Rader P, Jannasch P (2015). Hypersulfonated polyelectrolytes: preparation, stability and conductivity. Polymer Chemistry, 6(8): 1267–1274
Tanaka Y (2003). Mass transport and energy consumption in ion-exchange membrane electrodialysis of seawater. Journal of Membrane Science, 215(1–2): 265–279
Tanaka Y (2015). Ion Exchange Membranes: Fundamentals and Applications. Waltham: Elsevier
Tang C, Bondarenko M P, Yaroshchuk A, Bruening M L (2021). Highly selective ion separations based on counter-flow electromigration in nanoporous membranes. Journal of Membrane Science, 638: 119684
Tang C, Bruening M L (2020). Ion separations with membranes. Journal of Polymer Science, 58(20): 2831–2856
Tang C, Yaroshchuk A, Bruening M L (2020). Flow through negatively charged, nanoporous membranes separates Li+ and K+ due to induced electromigration. Chemical Communications (Cambridge), 56(74): 10954–10957
Tas S, Zoetebier B, Hempenius M A, Vancso G J, Nijmeijer K (2016). Monovalent cation selective crown ether containing poly(arylene ether ketone)/SPEEK blend membranes. RSC Advances, 6(60): 55635–55642
The White House (2018). A federal strategy to ensure secure and reliable supplies of critical minerals. Washington, DC: The White House
The White House (2022). FACT SHEET: Securing a Made in America Supply Chain for Critical Minerals. Washington, DC: The White House
Tirrell M, Hubbard S, Sholl D, Peterson E, Tsapatsis M, Maher K, Tumas W, Giammar D, Gilbert B, Loo Y L (2017). Basic Research Needs for Energy and Water: Report of the Office of Basic Energy Sciences Basic Research Needs Workshop for Energy and Water. Washington DC: USDOE Office of Science
Tong X, Zhang B P, Chen Y S (2016). Fouling resistant nanocomposite cation exchange membrane with enhanced power generation for reverse electrodialysis. Journal of Membrane Science, 516: 162–171
Tongwen X (2002). Electrodialysis processes with bipolar membranes (EDBM) in environmental protection: a review. Resources, Conservation and Recycling, 37(1): 1–22
Tran A T K, Zhang Y, De Corte D, Hannes J B, Ye W Y, Mondal P, Jullok N, Meesschaert B, Pinoy L, Van der Bruggen B (2014). P-recovery as calcium phosphate from wastewater using an integrated selectrodialysis/crystallization process. Journal of Cleaner Production, 77: 140–151
Trinke P, Keeley G P, Carmo M, Bensmann B, Hanke-Rauschenbach R (2019). Elucidating the effect of mass transport resistances on hydrogen crossover and cell performance in PEM water electrolyzers by varying the cathode ionomer content. Journal of the Electrochemical Society, 166(8): F465–F471
Tu Y M, Samineni L, Ren T W, Schantz A B, Song W, Sharma S, Kumar M (2021). Prospective applications of nanometer-scale pore size biomimetic and bioinspired membranes. Journal of Membrane Science, 620: 118968
Uliana A A, Bui N T, Kamcev J, Taylor M K, Urban J J, Long J R (2021). Ion-capture electrodialysis using multifunctional adsorptive membranes. Science, 372(6539): 296–299
Van der Bruggen B, Koninckx A, Vandecasteele C (2004). Separation of monovalent and divalent ions from aqueous solution by electrodialysis and nanofiltration. Water Research, 38(5): 1347–1353
Vandezande P, Gevers L E M, Vankelecom I F J (2008). Solvent resistant nanofiltration: separating on a molecular level. Chemical Society Reviews, 37(2): 365–405
Vermaas D A, Saakes M, Nijmeijer K (2011). Power generation using profiled membranes in reverse electrodialysis. Journal of Membrane Science, 385–386(1–2): 234–242
Vielstich W, Lamm A, Gasteiger H A (2003). Handbook of Fuel Cells: Fundamentals, Technology, Applications. Hoboken: Wiley
Vlasov V, Gvozdik N, Mokrousov M, Ryazantsev S, Luchkin S Y, Gorin D, Stevenson K (2022). Ion-exchange membrane impact on preferential water transfer in all-vanadium redox flow battery. Journal of Power Sources, 540: 231640
Wang J, Dlamini D S, Mishra A K, Pendergast M T M, Wong M C, Mamba B B, Freger V, Verliefde A R, Hoek E M (2014a). A critical review of transport through osmotic membranes. Journal of Membrane Science, 454: 516–537
Wang J W, Dlamini D S, Mishra A K, Pendergast M T M, Wong M C Y, Mamba B B, Freger V, Verliefde A R D, Hoek E M V (2014b). A critical review of transport through osmotic membranes. Journal of Membrane Science, 454: 516–537
Wang P F, Wang M, Liu F, Ding S Y, Wang X, Du G H, Liu J, Apel P, Kluth P, Trautmann C, Wang Y G (2018). Ultrafast ion sieving using nanoporous polymeric membranes. Nature Communications, 9(1): 569
Wang R Y, Lin S H (2021). Pore model for nanofiltration: History, theoretical framework, key predictions, limitations, and prospects. Journal of Membrane Science, 620: 118809
Wang W, Zhang Y, Li F, Chen Y, Mojallali Rostami S M, Hosseini S S, Shao L (2022a). Mussel-inspired polyphenol/polyethyleneimine assembled membranes with highly positive charged surface for unprecedented high cation perm-selectivity. Journal of Membrane Science, 658: 120703
Wang W, Zhang Y, Tan M, Xue C, Zhou W, Bao H, Hon Lau C, Yang X, Ma J, Shao L (2022b). Recent advances in monovalent ion selective membranes towards environmental remediation and energy harvesting. Separation and Purification Technology, 297: 121520
Wang W, Zhang Y, Yang X, Sun H, Wu Y, Shao L (2022c). Monovalent cation exchange membranes with janus charged structure for ion separation. Engineering.
Wang X, Li N, Li J, Feng J, Ma Z, Xu Y, Sun Y, Xu D, Wang J, Gao X (2019). Fluoride removal from secondary effluent of the graphite industry using electrodialysis: optimization with response surface methodology. Frontiers of Environmental Science & Engineering, 13(4): 51
Wang Z Y, Meng Q H, Ma R C, Wang Z K, Yang Y J, Sha H Y, Ma X J, Ruan X H, Zou X Q, Yuan Y, et al. (2020). Constructing an ion pathway for uranium extraction from seawater. Chem, 6(7): 1683–1691
Warnock S J, Sujanani R, Zofchak E S, Zhao S, Dilenschneider T J, Hanson K G, Mukherjee S, Ganesan V, Freeman B D, Abu-Omar M M, Bates C M (2021). Engineering Li/Na selectivity in 12-crown-4-functionalized polymer membranes. Proceedings of the National Academy of Sciences of the United States of America, 118(37): e2022197118
Warren P (2021). Techno-economic analysis of lithium extraction from geothermal brines. Golden: National Renewable Energy Lab.(NREL)
Wen Q, Yan D X, Liu F, Wang M, Ling Y, Wang P F, Kluth P, Schauries D, Trautmann C, Apel P, et al. (2016). Highly selective ionic transport through subnanometer pores in polymer films. Advanced Functional Materials, 26(32): 5796–5803
Wiedemann E, Heintz A, Lichtenthaler R N (1998). Transport properties of vanadium ions in cation exchange membranes: Determination of diffusion coefficients using a dialysis cell. Journal of Membrane Science, 141(2): 215–221
Wijmans J G, Baker R W (1995). The solution-diffusion model: a review. Journal of Membrane Science, 107(1–2): 1–21
Xi Y H, Liu Z, Ji J Y, Wang Y, Faraj Y, Zhu Y D, Xie R, Ju X J, Wang W, Lu X H, et al. (2018). Graphene-based membranes with uniform 2D nanochannels for precise sieving of mono-/multi-valent metal ions. Journal of Membrane Science, 550: 208–218
Xiao H, Chai M, Abdollahzadeh M, Ahmadi H, Chen V, Gore D B, Asadnia M, Razmjou A (2022). A lithium ion selective membrane synthesized from a double layered Zr based metalorganic framework (MOF-on-MOF) thin film. Desalination, 532: 115733
Xie W, Cook J, Park H B, Freeman B D, Lee C H, Mcgrath J E (2011). Fundamental salt and water transport properties in directly copolymerized disulfonated poly(arylene ether sulfone) random copolymers. Polymer, 52(9): 2032–2043
Xin W W, Fu J R, Qian Y C, Fu L, Kong X Y, Ben T, Jiang L, Wen L P (2022). Biomimetic KcsA channels with ultra-selective K+ transport for monovalent ion sieving. Nature Communications, 13(1): 1701
Xu D, Li Y, Yin L, Ji Y, Niu J, Yu Y (2018). Electrochemical removal of nitrate in industrial wastewater. Frontiers of Environmental Science & Engineering, 12(1): 9
Xu T W (2005). Ion exchange membranes: state of their development and perspective. Journal of Membrane Science, 263(1–2): 1–29
Yan H Y, Wang Y M, Wu L, Shehzad M A, Jiang C X, Fu R Q, Liu Z M, Xu T W (2019). Multistage-batch electrodialysis to concentrate high-salinity solutions: process optimisation, water transport, and energy consumption. Journal of Membrane Science, 570–571: 245–257
Yan J, Wang H, Fu R, Fu R, Li R, Chen B, Jiang C, Ge L, Liu Z, Wang Y, Xu T (2022). Ion exchange membranes for acid recovery: Diffusion Dialysis (DD) or Selective Electrodialysis (SED)? Desalination, 531: 115690
Yaroshchuk A (2000a). Asymptotic behaviour in the pressure-driven separations of ions of different mobilities in charged porous membranes. Journal of Membrane Science, 167(2): 163–185
Yaroshchuk A (2000b). Optimal charged membranes for the pressure-driven separations of ions of different mobilities: theoretical analysis. Journal of Membrane Science, 167(2): 149–161
Yaroshchuk A E (2008). Negative rejection of ions in pressure-driven membrane processes. Advances in Colloid and Interface Science, 139(1–2): 150–173
Yaroshchuk A E, Vovkogon Y A (1994a). Phenomenological theory of pressure-driven transport of ternary electrolyte solutions with a common coin and its specification for capillary space—charge model. Journal of Membrane Science, 86(1–2): 1–18
Yaroshchuk A E, Vovkogon Y A (1994b). Pressure-driven transport of ternary electrolyte solutions with a common coion through charged membranes: numerical analysis. Journal of Membrane Science, 86(1–2): 19–37
Yasuda H, Ikenberry L, Lamaze C (1969). Permeability of solutes through hydrated polymer membranes. Part II. Permeability of water soluble organic solutes. Die Makromolekulare Chemie, 125(1): 108–118
Yasuda H, Lamaze C, Ikenberry L (1968). Permeability of solutes through hydrated polymer membranes. Part I. Diffusion of sodium chloride. Die Makromolekulare Chemie, 118(1): 19–35
Yasuda H, Lamaze C E, Peterlin A (1971). Diffusive and hydraulic permeabilities of water in water-swollen polymer membranes. Journal of Polymer Science Part A: 2-Polymer Physics, 9(6): 1117–1131
Ye Y, Ngo H H, Guo W, Chang S W, Nguyen D D, Zhang X, Zhang J, Liang S (2020). Nutrient recovery from wastewater: From technology to economy. Bioresource Technology Reports, 11: 100425
Zabolotsky V I, Manzanares J A, Nikonenko V V, Lebedev K A, Lovtsov E G (2002). Space charge effect on competitive ion transport through ion-exchange membranes. Desalination, 147(1–3): 387–392
Zhang H C, Hou J, Hu Y X, Wang P Y, Ou R W, Jiang L, Liu J Z, Freeman B D, Hill A J, Wang H T (2018). Ultrafast selective transport of alkali metal ions in metal organic frameworks with subnanometer pores. Science Advances, 4(2): eaaq0066
Zhang Y, Van der Bruggen B, Pinoy L, Meesschaert B (2009). Separation of nutrient ions and organic compounds from salts in RO concentrates by standard and monovalent selective ion-exchange membranes used in electrodialysis. Journal of Membrane Science, 332(1–2): 104–112
Zhou M, Chen X, Pan J, Yang S, Han B, Xue L, Shen J, Gao C, Van der Bruggen B (2017a). A novel UV-crosslinked sulphonated polysulfone cation exchange membrane with improved dimensional stability for electrodialysis. Desalination, 415: 29–39
Zhou X B, Liu G D, Yamato K, Shen Y, Cheng R X, Wei X X, Bai W L, Gao Y, Li H, Liu Y, et al. (2012). Self-assembling subnanometer pores with unusual mass-transport properties. Nature Communications, 3(1): 949
Zhou X L, Zhao T S, An L, Zeng Y K, Wei L (2017b). Critical transport issues for improving the performance of aqueous redox flow batteries. Journal of Power Sources, 339: 1–12
Zhu J, Liao J, Jin W, Luo B, Shen P, Sotto A, Shen J, Gao C (2019). Effect of functionality of cross-linker on sulphonated polysulfone cation exchange membranes for electrodialysis. Reactive & Functional Polymers, 138: 104–113
Zlotorowicz A, Strand R V, Burheim O S, Wilhelmsen O, Kjelstrup S (2017). The permselectivity and water transference number of ion exchange membranes in reverse electrodialysis. Journal of Membrane Science, 523: 402–408
Zofchak E S, Zhang Z D, Marioni N, Duncan T J, Sachar H S, Chamseddine A, Freeman B D, Ganesan V (2022). Cation-ligand interactions dictate salt partitioning and diffusivity in ligand-functionalized polymer membranes. Macromolecules, 55(6): 2260–2270
Zou Z Y, Ma N, Wang A P, Ran Y B, Song T, Jiao Y, Liu J P, Zhou H, Shi W, He B, et al. (2020). Relationships between Na+ distribution, concerted migration, and diffusion properties in rhombohedral NASICON. Advanced Energy Materials, 10(30): 2001486
Author information
Authors and Affiliations
Corresponding author
Additional information
Author Biography
Ngai Yin Yip is the Lavon Duddleson Krumb Assistant Professor of Earth and Environmental Engineering at Columbia University, USA. He received his doctoral degree in Chemical and Environmental Engineering from Yale University, USA. His current research is focused on advancing physicochemical technologies and innovations for critical separation challenges in water, energy, and the environment, including high-salinity desalination, zero-liquid discharge, resource recovery from wastewaters, next-generation selective membranes, switchable solvents for water treatment, and low-grade heat utilization. For his research contributions, Dr. Yip has been recognized by the James J. Morgan Early Career Award of Environmental Science & Technology (Honorable Mention) and is featured as an Emerging Investigator by Environmental Science: Water Research & Technology. In addition to serving on the editorial boards of Desalination and Chemical Engineering Journal Advances, he is also an Early Career Board member for ACS ES&T Engineering. Yip has been a guest editor for special issues of Desalination and Water Science & Technology.
Highlights
• IEM ion/ion selectivities of charge, valence, & specific ion are critically assessed.
• Ion/molecule selectivities of ion/solvent and ion/uncharged solute are reviewed.
• Approaches to advance the selectivities through sorption and migration are analyzed.
• The permeability-selectivity tradeoff appears to be pervasive.
• Ion/molecule selectivities are comparatively underdeveloped and poorly understood.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Fan, H., Huang, Y. & Yip, N.Y. Advancing ion-exchange membranes to ion-selective membranes: principles, status, and opportunities. Front. Environ. Sci. Eng. 17, 25 (2023). https://doi.org/10.1007/s11783-023-1625-0
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11783-023-1625-0
Keywords
- Ion-exchange membranes
- Selectivity
- Separations