Skip to main content
Log in

Global perspectives and future research directions for the phytoremediation of heavy metal-contaminated soil: A knowledge mapping analysis from 2001 to 2020

  • Review Article
  • Published:
Frontiers of Environmental Science & Engineering Aims and scope Submit manuscript

Abstract

In total, 9,552 documents were extracted from the Web of Science Core Collection and subjected to knowledge mapping and visualization analysis for the field of phytoremediation of HM-contaminated soil (PHMCS) with CiteSpace 5.7 R3 software. The results showed that (1) the number of publications increased linearly over the studied period. The top 10 countries/regions, institutions and authors contributing to this field were exhibited. (2) Keyword co-occurrence cluster analysis revealed a total of 8 clusters, including “Bioremediation,” “Arsenic,” “Biochar,” “Oxidative stress,” “Hyperaccumulation,” “EDTA,” “Arbuscular mycorrhizal fungi,” and “Environmental pollution” clusters (3) In total, 334 keyword bursts were obtained, and the 25 strongest, longest duration, and newest keyboard bursts were analyzed in depth. The strongest keyword burst test showed that the hottest keywords could be divided into 7 groups, i.e., “Plant bioremediation materials,” “HM types,” “Chelating amendments,” “Other improved strategies,” “Technical terminology,” “Risk assessment,” and “Other.” Almost half of the newest topics had emerged in the past 3 years, including “biochar,” “drought,” “health risk assessment,” “electrokinetic remediation,” “nanoparticle,” and “intercropping.” (4) In total, 9 knowledge base clusters were obtained in this study. The studies of Ali et al. (2013), Blaylock et al. (1997), Huang et al. (1997), van der Ent et al. (2013), Salt et al. (1995), and Salt (1998), which had both high frequencies and the strongest burst scores, have had the most profound effects on PHMCS research. Finally, future research directions were proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adrees M, Ali S, Rizwan M, Zia-Ur-Rehman M, Ibrahim M, Abbas F, Farid M, Qayyum M F, Irshad M K (2015). Mechanisms of silicon-mediated alleviation of heavy metal toxicity in plants: A review. Ecotoxicology and Environmental Safety, 119: 186–197

    Article  CAS  Google Scholar 

  • Ahmad M, Rajapaksha A U, Lim J E, Zhang M, Bolan N, Mohan D, Vithanage M, Lee S S, Ok Y S (2014). Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere, 99: 19–33

    Article  CAS  Google Scholar 

  • Ali H, Khan E, Sajad M A (2013). Phytoremediation of heavy metals-concepts and applications. Chemosphere, 91(7): 869–881

    Article  CAS  Google Scholar 

  • Anning A K, Akoto R (2018). Assisted phytoremediation of heavy metal contaminated soil from a mined site with Typha latifolia and Chrysopogon zizanioides. Ecotoxicology and Environmental Safety, 148: 97–104

    Article  CAS  Google Scholar 

  • Asad S A, Farooq M, Afzal A, West H (2019). Integrated phytobial heavy metal remediation strategies for a sustainable clean environment: A review. Chemosphere, 217: 925–941

    Article  CAS  Google Scholar 

  • Bai Y, Zhou Y, Gong J (2021). Physiological mechanisms of the tolerance response to manganese stress exhibited by Pinus massoniana, a candidate plant for the phytoremediation of Mn-contaminated soil. Environmental Science and Pollution Research International, 1–12

  • Baker A J M, Brooks R R (1989). Terrestrial higher plants which hyperaccumulate metallic elements: A review of their distribution, ecology and phytochemistry. Biorecovery, 1: 81–126

    CAS  Google Scholar 

  • Biederman L A, Harpole W S (2013). Biochar and its effects on plant productivity and nutrient cycling: A meta-analysis. Global Change Biology. Bioenergy, 5(2): 202–214

    Article  CAS  Google Scholar 

  • Blaylock M J, Salt D E, Dushenkov S, Zakharova O, Gussman C, Kapulnik Y, Ensley B D, Raskin I (1997). Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environmental Science & Technology, 31(3): 860–865

    Article  Google Scholar 

  • Brooks R R, Lee J, Reeves R D, Jaffré T (1977). Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants. Journal of Geochemical Exploration, 7: 49–57

    Article  CAS  Google Scholar 

  • Bukhat S, Imran A, Javaid S, Shahid M, Majeed A, Naqqash T (2020). Communication of plants with microbial world: Exploring the regulatory networks for PGPR mediated defense signaling. Microbiological Research, 238: 126486

    Article  CAS  Google Scholar 

  • Cappa J J, Pilon-Smit E A H (2013). Evolutionary aspects of elemental hyperaccumulation. Planta 238: 1–9

    Google Scholar 

  • Carvalho C F M, Viana D G, Pires F R, Egreja Filho F B, Bonomo R, Martins L F, Cruz L B S, Nascimento M C P, Cargnelutti Filho A, Rocha Júnior P R D (2019). Phytoremediation of barium-affected flooded soils using single and intercropping cultivation of aquatic macrophytes. Chemosphere, 214: 10–16

    Article  CAS  Google Scholar 

  • Chaudhry H, Nisar N, Mehmood S, Iqbal M, Nazir A, Yasir M (2020). Indian Mustard Brassica juncea efficiency for the accumulation, tolerance and translocation of zinc from metal contaminated soil. Biocatalysis and Agricultural Biotechnology, 23: 101489

    Article  Google Scholar 

  • Chen C (2004). Searching for intellectual turning points: Progressive knowledge domain visualization. Proceedings of the National Academy of Sciences of the United States of America, 101(Suppl 1): 5303–5310

    Article  CAS  Google Scholar 

  • Chen C, Dubin R, Kim M C (2014). Emerging trends and new developments in regenerative medicine: A scientometric update (2000–2014). Expert Opinion on Biological Therapy, 14(9): 1295–1317

    Article  Google Scholar 

  • Chen C, Hu Z, Liu S, Tseng H (2012). Emerging trends in regenerative medicine: A scientometric analysis in CiteSpace. Expert Opinion on Biological Therapy, 12(5): 593–608

    Article  Google Scholar 

  • Chen C M (2017). Science mapping: A systematic review of the literature. Journal of Data and Information Science, 2(2): 1–40

    Article  CAS  Google Scholar 

  • Chen D, Liu X, Bian R, Cheng K, Zhang X, Zheng J, Joseph S, Crowley D, Pan G, Li L (2018). Effects of biochar on availability and plant uptake of heavy metals: A meta-analysis. Journal of Environmental Management, 222: 76–85

    Article  CAS  Google Scholar 

  • Cui X, Guo X, Wang Y, Wang X, Zhu W, Shi J, Lin C, Gao X (2019). Application of remote sensing to water environmental processes under a changing climate. Journal of Hydrology (Amsterdam), 574: 892–902

    Article  Google Scholar 

  • de Castilhos Ghisi N, Zuanazzi N R, Fabrin T M C, Oliveira E C (2020). Glyphosate and its toxicology: A scientometric review. Science of the Total Environment, 733: 139359

    Article  CAS  Google Scholar 

  • El-Bahr S M, Shousha S, Albokhadaim I, Shehab A, Khattab W, Ahmed-Farid O, El-Garhy O, Abdelgawad A, El-Naggar M, Moustafa M, Badr O, Shathele M (2020). Impact of dietary zinc oxide nanoparticles on selected serum biomarkers, lipid peroxidation and tissue gene expression of antioxidant enzymes and cytokines in Japanese quail. BMC Veterinary Research, 16: 349

    Article  CAS  Google Scholar 

  • Emamverdian A, Ding Y L, Mokhberdoran F, Xie Y F, Zheng X, Wang Y J (2020). Silicon dioxide nanoparticles improve plant growth by enhancing antioxidant enzyme capacity in bamboo (Pleioblastus pygmaeus) under lead toxicity. Trees (Berlin), 34(2): 469–481

    Article  CAS  Google Scholar 

  • Ernst W H O (2006). Evolution of metal tolerance in higher plants. Forest Snow and Landscape Research, 80(3): 251–274

    Google Scholar 

  • Fayiga A O, Ma L Q (2006). Using phosphate rock to immobilize metals in soil and increase arsenic uptake by hyperaccumulator Pteris vittata. Science of the Total Environment, 359(1–3): 17–25

    Article  CAS  Google Scholar 

  • Gong X, Huang D, Liu Y, Zou D, Hu X, Zhou L, Wu Z, Yang Y, Xiao Z (2021). Nanoscale zerovalent iron, carbon nanotubes and biochar facilitated the phytoremediation of cadmium contaminated sediments by changing cadmium fractions, sediments properties and bacterial community structure. Ecotoxicology and Environmental Safety, 208: 111510

    Article  CAS  Google Scholar 

  • Guan X J, Zhao K Y, Liu S L, Li Y, Yu F M, Li C M, Liu K H (2021). The Global Trends and Hot Topics in the Field of Phytoremediation of Manganese-Contaminated Environment over the Past Three Decades-A Review Based on Citespace Visualization. Journal of Guangxi Normal University (Natural Sicence Edition): 1–17 (in Chinese)

  • Guedes F R C M, Maia C F, Silva B R S d, Batista B L, Alyemeni M N, Ahmad P, Lobato A K d S ((2021). Exogenous 24-epibrassinolide stimulates root protection, and leaf antioxidant enzymes in rice plants lead stressed: central roles to minimize Pb content and oxidative stress. Environmental Pollution, 280(1): 116992

    Article  CAS  Google Scholar 

  • Guo J, Lv X, Jia H, Hua L, Ren X, Muhammad H, Wei T, Ding Y (2020). Effects of EDTA and plant growth-promoting rhizobacteria on plant growth and heavy metal uptake of hyperaccumulator Sedum alfredii Hance. Journal of Environmental Sciences (China), 88: 361–369

    Article  CAS  Google Scholar 

  • Hassan Z, Aarts M G M (2011). Opportunities and feasibilities for biotechnological improvement of Zn, Cd or Ni tolerance and accumulation in plants. Environmental and Experimental Botany, 72(1): 53–63

    Article  CAS  Google Scholar 

  • Hu Y M, Zhang P, Yang M, Liu Y Q, Zhang X, Feng S S, Guo D W, Dang X L (2020). Biochar is an effective amendment to remediate Cd-contaminated soils—A meta-analysis. Journal of Soils and Sediments, 20(11): 3884–3895

    Article  CAS  Google Scholar 

  • Huang H, Zhao Y, Xu Z, Zhang W, Jiang K (2019). Physiological responses of Broussonetia papyrifera to manganese stress, a candidate plant for phytoremediation. Ecotoxicology and Environmental Safety, 181: 18–25

    Article  CAS  Google Scholar 

  • Huang J W W, Chen J J, Berti W R, Cunningham S D (1997). Phytoremediation of Lead-Contaminated Soils: Role of Synthetic Chelates in Lead Phytoextraction. Environmental Science & Technology, 31(3): 800–805

    Article  CAS  Google Scholar 

  • Huang L, Zhou M, Lv J, Chen K (2020). Trends in global research in forest carbon sequestration: A bibliometric analysis. Journal of Cleaner Production, 252: 119908

    Article  Google Scholar 

  • Jaffré T, Brooks R R, Lee J, Reeves R D (1976). Sebertia acuminata: A hyperaccumulator of nickel from New Caledonia. Science, 193 (4253): 579–580

    Article  Google Scholar 

  • Ji Z, Pei Y (2019). Bibliographic and visualized analysis of geopolymer research and its application in heavy metal immobilization: A review. Journal of Environmental Management, 231: 256–267

    Article  CAS  Google Scholar 

  • Kamali M, Jahaninafard D, Mostafaie A, Davarazar M, Gomes A P D, Tarelho L A C, Dewil R, Aminabhavi T M (2020). Scientometric analysis and scientific trends on biochar application as soil amendment. Chemical Engineering Journal, 395: 125128

    Article  CAS  Google Scholar 

  • Kim Y H, Khan A L, Waqas M, Lee I J (2017). Silicon regulates antioxidant activities of crop plants under abiotic-induced oxidative stress: A review. Frontiers in Plant Science, 8: 510

    Article  Google Scholar 

  • Kofroňová M, Hrdinová A, Mašková P, Soudek P, Tremlová J, Pinkas D, Lipavská H (2019). Strong antioxidant capacity of horseradish hairy root cultures under arsenic stress indicates the possible use of Armoracia rusticana plants for phytoremediation. Ecotoxicology and Environmental Safety, 174: 295–304

    Article  Google Scholar 

  • Lee R B (1982). Selectivity and kinetics of ion uptake by barley plants following nutrient deficiency. Annals of Botany, 50(4): 429–449

    Article  CAS  Google Scholar 

  • Lessl J T, Ma L Q (2013). Sparingly-soluble phosphate rock induced significant plant growth and arsenic uptake by Pteris vittata from three contaminated soils. Environmental Science & Technology, 47(10): 5311–5318

    Article  CAS  Google Scholar 

  • Li K, Rollins J, Yan E (2018). Web of Science use in published research and review papers 1997–2017: A selective, dynamic, cross-domain, content-based analysis. Scientometrics, 115(1): 1–20

    Article  Google Scholar 

  • Li M S, Luo Y P, Su Z Y (2007). Heavy metal concentrations in soils and plant accumulation in a restored manganese mineland in Guangxi, South China. Environmental pollution, 147(1): 168–175

    Article  CAS  Google Scholar 

  • Li N N, Wang J C, Song W Y (2015). Arsenic uptake and translocation in plants. Plant & Cell Physiology, 57(1): 4–13

    Article  Google Scholar 

  • Li Y, Lin J M, Huang Y Y, Yao Y W, Wang X R, Liu C Z, Liang Y, Liu K H, Yu F M (2020). Bioaugmentation-assisted phytoremediation of manganese and cadmium co-contaminated soil by Polygonaceae plants (Polygonum hydropiper L. and Polygonum lapathifolium L.) and Enterobacter sp. FM-1. Plant and Soil, 448(1–2): 439–453

    Article  CAS  Google Scholar 

  • Liang J Y, Wang Y S, Duan M, Li Y, Chen Z, Yu F M, Liu K H (2021). Effects of Biochar on Soil Available Cadmium and Cadmium Uptake by Plants—A Meta Analysis. Journal of Guangxi Normal University (Natural Science Edition): 1–14 (in Chinese)

  • Liu K H, Fan L Q, Li Y, Zhou Z M, Chen C S, Chen B, Yu F M (2018). Concentrations and health risks of heavy metals in soils and crops around the Pingle manganese (Mn) mine area in Guangxi Province, China. Environmental Science and Pollution Research International, 25(30): 30180–30190

    Article  CAS  Google Scholar 

  • Liu K H, Li C M, Tang S Q, Shang G D, Yu F M, Li Y (2020b). Heavy metal concentration, potential ecological risk assessment and enzyme activity in soils affected by a lead-zinc tailing spill in Guangxi, China. Chemosphere, 251: 126415

    Article  CAS  Google Scholar 

  • Liu K H, Yu F M, Chen M L, Zhou Z M, Chen C S, Li M S, Zhu J (2016a). A newly found manganese hyperaccumulator: Polygonum lapathifolium Linn. International Journal of Phytoremediation, 18(4): 348–353

    Article  CAS  Google Scholar 

  • Liu K H, Zhang H C, Liu Y, Li Y, Yu F M (2020d). Investigation of plant species and their heavy metal accumulation in manganese mine tailings in Pingle Mn mine, China. Environmental Science and Pollution Research International, 27(16): 19933–19945

    Article  CAS  Google Scholar 

  • Liu K H, Liang X L, Li C M, Yu F M, Li Y (2020c). Nutrient status and pollution levels in five areas around a manganese mine in southern China. Frontiers of Environmental Science & Engineering: 14(6): 100

    Article  CAS  Google Scholar 

  • Liu K H, Xu J, Dai C L, Li C M, Li Y, Ma J M, Yu F M (2021). Exogenously applied oxalic acid assists in the phytoremediation of Mn by Polygonum pubescens Blume cultivated in three Mn-contaminated soils. Frontiers of Environmental Science & Engineering, 15(5): 86

    Article  CAS  Google Scholar 

  • Liu K H, Zhou Z M, Yu F M, Chen M L, Chen C S, Zhu J, Jiang Y R (2016b). A newly found cadmium hyperaccumulatior: Centella asiatica Linn. Fresenius Environmental Bulletin and Advances in Food Sciences, 25: 2668–2675

    CAS  Google Scholar 

  • Lu J, Lu H, Li J, Liu J, Feng S, Guan Y (2019). Multi-criteria decision analysis of optimal planting for enhancing phytoremediation of trace heavy metals in mining sites under interval residual contaminant concentrations. Environmental pollution, 255(Pt 2): 113255

    Article  CAS  Google Scholar 

  • Ma C, Ci K, Zhu J, Sun Z, Liu Z, Li X, Zhu Y, Tang C, Wang P, Liu Z (2021). Impacts of exogenous mineral silicon on cadmium migration and transformation in the soil-rice system and on soil health. Science of the Total Environment, 759: 143501

    Article  CAS  Google Scholar 

  • Ma L Q, Komar K M, Tu C, Zhang W, Cai Y, Kennelley E D (2001). A fern that hyperaccumulates arsenic. Nature, 409: 579

    Article  CAS  Google Scholar 

  • Ma Y, Rajkumar M, Moreno A, Zhang C, Freitas H (2017). Serpentine endophytic bacterium Pseudomonas azotoformans ASS1 accelerates phytoremediation of soil metals under drought stress. Chemosphere, 185: 75–85

    Article  CAS  Google Scholar 

  • Ma Y, Rajkumar M, Zhang C, Freitas H (2016). Inoculation of Brassica oxyrrhina with plant growth promoting bacteria for the improvement of heavy metal phytoremediation under drought conditions. Journal of Hazardous Materials, 320: 36–44

    Article  CAS  Google Scholar 

  • Mahar A, Wang P, Ali A, Awasthi M K, Lahori A H, Wang Q, Li R, Zhang Z (2016). Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: A review. Ecotoxicology and Environmental Safety, 126: 111–121

    Article  CAS  Google Scholar 

  • Meena V S, Meena S K, Verma J P, Kumar A, Aeron A, Mishra P K, Bisht J K, Pattanayak A, Naveed M, Dotaniya M L (2017). Plant beneficial rhizospheric microorganism (PBRM) strategies to improve nutrients use efficiency: A review. Ecological Engineering, 107: 8–32

    Article  Google Scholar 

  • Ministry of environmental protection and Ministry of land and resources of China (2014). Bulletin of national soil pollution survey. [2021-03-21]. http://www.zhb.gov.cn/gkml/hbb/qt/201404/W020140417558995804588.pdf

  • Nie L, Shah S, Rashid A, Burd G I, George Dixon D, Glick B R (2002). Phytoremediation of arsenate contaminated soil by transgenic canola and the plant growth-promoting bacterium Enterobacter cloacae CAL2. Plant Physiology and Biochemistry, 40(4): 355–361

    Article  CAS  Google Scholar 

  • Norini M P, Thouin H, Miard F, Battaglia-Brunet F, Gautret P, Guégan R, Le Forestier L, Morabito D, Bourgerie S, Motelica-Heino M (2019). Mobility of Pb, Zn, Ba, As and Cd toward soil pore water and plants (willow and ryegrass) from a mine soil amended with biochar. Journal of Environmental Management, 232: 117–130

    Article  CAS  Google Scholar 

  • Ouyang W, Wang Y, Lin C, He M, Hao F, Liu H, Zhu W (2018). Heavy metal loss from agricultural watershed to aquatic system: A scientometrics review. Science of the Total Environment, 637–638: 208–220

    Article  Google Scholar 

  • Pan P, Lei M, Qiao P W, Zhou G D, Wan X M, Chen T B (2019). Potential of indigenous plant species for phytoremediation of metal (loid)-contaminated soil in the Baoshan mining area, China. Environmental Science and Pollution Research International, 26 (23): 23583–23592

    Article  CAS  Google Scholar 

  • Pollard A J, Powell K D, Harper F A, Smith J A C (2002). The Genetic Basis of Metal Hyperaccumulation in Plants. Critical Reviews in Plant Sciences, 21(6): 539–566

    Article  CAS  Google Scholar 

  • Racchi M L (2013). Antioxidant defenses in plants with attention to Prunus and Citrus spp. Antioxidants (Basel, Switzerland), 2(4): 340–369

    CAS  Google Scholar 

  • Rajkumar M, Prasad M N V, Swaminathan S, Freitas H (2013). Climate change driven plant-metal-microbe interactions. Environment International, 53: 74–86

    Article  CAS  Google Scholar 

  • Reeves R D, Baker A J M (1984). Studies on metal uptake by plants from serpentine and non-serpentine polulations of Thlaspi goesingense Hálácsy (cruciferae). New Phytologist, 28(1): 191–204

    Google Scholar 

  • Robinson W O, Edgington G (1945). Minor elements in plants, and some accumulator plants. Soil Science, 60(1): 15–28

    Article  CAS  Google Scholar 

  • Sachs J (1865). Handbuch der Experimental-Physiologie der Pflanzen. Leipzig, Germany: Verlag von Wilhelm Engelmann. 153–154

    Google Scholar 

  • Salt D E, Blaylock M, Kumar N P B A, Dushenkov V, Ensley B D, Chet I, Raskin I (1995). Phytoremediation: A novel strategy for the removal of toxic metals from the environment using plants. Bio/ technology (Nature Publishing Company), 13(5): 468–474

    CAS  Google Scholar 

  • Salt D E, Smith R D, Raskin I (1998). Phytoremediation. Annual Review of Plant Physiology and Plant Molecular Biology, 49(1): 643–668

    Article  CAS  Google Scholar 

  • Schat H (1999). Plant responses to inadequate and toxic micro-nutrient availability: General and nutrient-specific mechanisms. In: Gissel-Nielsen G, Jensen A, eds. Plant Nutrition Molecular Biology and Genetics. Amsterdam: Kluwer, 311–326

    Chapter  Google Scholar 

  • Schützendübel A, Polle A (2002). Plant responses to abiotic stresses: Heavy metal-induced oxidative stress and protection by mycorrhization. Journal of Experimental Botany, 53(372): 1351–1365

    Google Scholar 

  • Sharifi P, Bidabadi S S, Zaid A, Abdel Latef A A H (2021). Efficacy of multi-walled carbon nanotubes in regulating growth performance, total glutathione and redox state of Calendula officinalis L. cultivated on Pb and Cd polluted soil. Ecotoxicology and Environmental Safety, 213: 112051

    Article  CAS  Google Scholar 

  • Sharples J M, Meharg A A, Chambers S M, Cairney J W G (2000). Symbiotic solution to arsenic contamination. Nature, 404(6781): 951–952

    Article  CAS  Google Scholar 

  • Shoji R, Yajima R, Yano Y (2008). Arsenic speciation for the phytoremediation by the Chinese brake fern, Pteris vittata. Journal of Environmental Sciences (China), 20(12): 1463–1468

    Article  CAS  Google Scholar 

  • Simiele M, Lebrun M, Miard F, Trupiano D, Poupart P, Forestier O, Scippa G S, Bourgerie S, Morabito D (2020). Assisted phytoremediation of a former mine soil using biochar and iron sulphate: Effects on As soil immobilization and accumulation in three Salicaceae species. Science of the Total Environment, 710: 136203

    Article  CAS  Google Scholar 

  • Siyar R, Doulati Ardejani F, Farahbakhsh M, Norouzi P, Yavarzadeh M, Maghsoudy S (2020). Potential of Vetiver grass for the phytoremediation of a real multi-contaminated soil, assisted by electrokinetic. Chemosphere, 246: 125802

    Article  CAS  Google Scholar 

  • Speiser A, Silbermann M, Dong Y, Haberland S, Uslu V V, Wang S, Bangash S A K, Reichelt M, Meyer A J, Wirtz M, Hell R (2018). Sulfur partitioning between glutathione and protein synthesis determines plant growth. Plant Physiology, 177(3): 927–937

    Article  CAS  Google Scholar 

  • Straker C J, Mitchell D T (1986). The activity and characterization of acid phosphatases in endomycorrhizal fungi of the Ericaeae. New Phytologist, 104(2): 243–256

    Article  CAS  Google Scholar 

  • Syukor A R A, Sulaiman S, Siddique M N I, Zularisam A W, Said M I M (2016). Integration of phytogreen for heavy metal removal from wastewater. Journal of Cleaner Production, 112(Pt. 4): 3124–3131

    Article  Google Scholar 

  • Tariq S R, Ashraf A (2016). Comparative evaluation of phytoremediation of metal contaminated soil of firing range by four different plant species. Arabian Journal of Chemistry, 9(6): 806–814

    Article  CAS  Google Scholar 

  • van der Ent A, Baker A J M, Reeves R D, Pollard A J, Schat H (2013). Hyperaccumulators of metal and metalloid trace elements: Facts and fiction. Plant and Soil, 362(1–2): 319–334

    Article  CAS  Google Scholar 

  • Vieira L A J, Alves R D F B, Menezes-Silva P E, Mendonca M A C, Silva M L F, Silva M C A P, Sousa L F, Loram-Lourenco L, Alves da Silva A, Costa A C, Silva F G, Farnese F S (2021). Water contamination with atrazine: Is nitric oxide able to improve Pistia stratiotes phytoremediation capacity? Environmental Pollution, 272: 115971

    Article  CAS  Google Scholar 

  • Visoottiviseth P, Francesconi K, Sridokchan W (2002). The potential of Thai indigenous plant species for the phytoremediation of arsenic contaminated land. Environmental Pollution, 118(3): 453–461

    Article  CAS  Google Scholar 

  • Wang G, Zhang J S, Wang G F, Fan X Y, Sun X, Qin H L, Xu N, Zhong M Y, Qiao Z Y, Tang Y P, Song R T (2014). Proline responding1 plays a critical role in regulating general protein synthesis and the cell cycle in maize. Plant Cell, 26(6): 2582–2600

    Article  CAS  Google Scholar 

  • Wang L, Lin H, Dong Y B, He Y H (2018). Effects of cropping patterns of four plants on the phytoremediation of vanadium-containing synthetic wastewater. Ecological Engineering, 115: 27–34

    Article  Google Scholar 

  • Wieshammer G, Unterbrunner R, García T B, Zivkovic M F, Puschenreiter M, Wenzel W W(2007). Phytoextraction of Cd and Zn from agricultural soils by Salix spp. and intercropping of Salix caprea and Arabidopsis halleri. Plant and Soil, 298(1–2): 255–264

    Article  CAS  Google Scholar 

  • Xie M D, Chen W Q, Lai X C, Dai H B, Sun H, Zhou X Y, Chen T B (2019). Metabolic responses and their correlations with phytochelatins in Amaranthus hypochondriacus under cadmium stress. Environmental Pollution, 252(Pt B): 1791–1800

    Article  CAS  Google Scholar 

  • Xie X L, Yuan C, Zhu X L, Fu Y C, Gui J, Zhang Z X, Li P X, Liu D H (2018). In situ passivation remediation material in cadmium contaminated alkaline agricultural soil: A review. Chinese Journal of Soil Science, 49: 1254–1260

    Google Scholar 

  • Kumar Yadav K, Gupta N, Kumar A, Reece L M, Singh N, Rezania S, Ahmad Khan A (2018). Mechanistic understanding and holistic approach of phytoremediation: A review on application and future prospects. Ecological Engineering, 120: 274–298

    Article  Google Scholar 

  • Yang C, Ho Y N, Inoue C, Chien M F (2020a). Long-term effectiveness of microbe-assisted arsenic phytoremediation by Pteris vittata in field trials. Science of the Total Environment, 740: 140137

    Article  CAS  Google Scholar 

  • Yang C, Ho Y N, Makita R, Inoue C, Chien M F (2020b). A multifunctional rhizobacterial strain with wide application in different ferns facilitates arsenic phytoremediation. Science of the Total Environment, 712: 134504

    Article  CAS  Google Scholar 

  • Yang G M, Zhu L J, Santos J A G, Chen Y S, Li G, Guan D X (2017). Effect of phosphate minerals on phytoremediation of arsenic contaminated groundwater using an arsenic-hyperaccumulator. Environmental Technology & Innovation, 8: 366–372

    Article  Google Scholar 

  • Yang L P, Zhu J, Wang P, Zeng J, Tan R, Yang Y Z, Liu Z M (2018). Effect of Cd on growth, physiological response, Cd subcellular distribution and chemical forms of Koelreuteria paniculata. Ecotoxicology and Environmental Safety, 160: 10–18

    Article  CAS  Google Scholar 

  • Yang X J, Deng D M, Liu K H, Yu F M (2016). Response of enzymatic and non-enzymatic antioxidant defense systems of Polygonum hydropiper to Mn stress. Journal of Central South University of Technology, 23(4): 793–797

    Article  CAS  Google Scholar 

  • Yu F M, Li Y, Li F R, Li C M, Liu K H (2019). The effects of EDTA on plant growth and manganese (Mn) accumulation in Polygonum pubescens Blume cultured in unexplored soil, mining soil and tailing soil from the Pingle Mn mine, China. Ecotoxicology and Environmental Safety, 173: 235–242

    Article  CAS  Google Scholar 

  • Yu F M, Liu K H, Li M S, Zhou Z M, Deng H, Chen B (2013). Effects of cadmium on enzymatic and non-enzymatic antioxidative defences of rice (Oryza sativa L.). International Journal of Phytoremediation, 15 (6): 513–521

    Article  CAS  Google Scholar 

  • Yu F M, Li C M, Dai C L, Liu K H, Li Y (2020a). Phosphate: Coupling the functions of fertilization and passivation in phytoremediation of manganese-contaminated soil by Polygonum pubescens Blume. Chemoshere, 260: 127651

    Article  CAS  Google Scholar 

  • Yu F M, Yao Y W, Feng J P, Wang X R, Ma J M, Liu K H, Li Y (2020b). Enterobacter sp. FM-1 inoculation influenced heavy metal-induced oxidative stress in pakchoi (Brassica campestris L. spp. Chinensis Makino) and water spinach (Ipomoea aquatic F.) cultivated in cadmium and lead co-contaminated soils. Plant and Soil: 459(1): 155–171

    Google Scholar 

  • Zaid A, Wani S H (2019). Reactive oxygen species generation, scavenging and signaling in plant defines responses. In: Jogaiah S, Abdelrahman M, eds. Bioactive Molecules in Plant Defense. Cham: Springer

    Google Scholar 

  • Zhou W, Kou A Q, Chen J, Ding B Q (2018). A retrospective analysis with bibliometric of energy security in 2000–2017. Energy Reports, 4: 724–732

    Article  Google Scholar 

  • Zhu H H, Chen L, Xing W, Ran S M, Wei Z H, Amee M, Wassie M, Niu H, Tang D Y, Sun J, Du D Y, Yao J, Hou H B, Chen K, Sun J (2020). Phytohormones-induced senescence efficiently promotes the transport of cadmium from roots into shoots of plants: A novel strategy for strengthening of phytoremediation. Journal of Hazardous Materials, 388: 122080

    Article  CAS  Google Scholar 

  • Zhu Y, Xu F, Liu Q, Chen M, Liu X, Wang Y, Sun Y, Zhang L (2019). Nanomaterials and plants: Positive effects, toxicity and the remediation of metal and metalloid pollution in soil. Science of the Total Environment, 662: 414–421

    Article  CAS  Google Scholar 

  • Zuanazzi N R, Ghisi N C, Oliveira E C (2020). Analysis of global trends and gaps for studies about 2,4-D herbicide toxicity: A scientometric review. Chemosphere, 241: 125016

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was supported by the National Natural Science Foundation of China (Grant No. 41967019) and the National Social Science Foundation Project of China (No. 16BTQ033).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi Li or Fangming Yu.

Additional information

Highlights

• The overall global perspective of the PHMCS field was obtained.

• PHMCS research has flourished over the past two decades.

• In total, 8 clusters were obtained, and many new hot topics emerged.

• “Biochar,” “Drought,” “Nanoparticle,” etc., may be future hot topics.

• Five future directions are proposed.

Supplementary Files of

11783_2021_1507_MOESM1_ESM.pdf

Global perspectives and future research directions for the phytoremediation of heavy metal-contaminated soil: A knowledge mapping analysis from 2001 to 2020

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, K., Guan, X., Li, C. et al. Global perspectives and future research directions for the phytoremediation of heavy metal-contaminated soil: A knowledge mapping analysis from 2001 to 2020. Front. Environ. Sci. Eng. 16, 73 (2022). https://doi.org/10.1007/s11783-021-1507-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11783-021-1507-2

Keywords

Navigation