Skip to main content
Log in

Zero-valent manganese nanoparticles coupled with different strong oxidants for thallium removal from wastewater

  • Research Article
  • Published:
Frontiers of Environmental Science & Engineering Aims and scope Submit manuscript

Abstract

Nano zero-valent manganese (nZVMn, Mn0) was prepared through a borohydride reduction method and coupled with different oxidants (persulfate (S2O82−), hypochlorite (ClO), or hydrogen peroxide (H2O2)) to remove thallium (Tl) from wastewater. The surface of Mn0 was readily oxidized to form a core-shell composite (MnOx@Mn0), which consists of Mn0 as the inner core and MnOx (MnO, Mn2O3, and Mn3O4) as the outer layer. When Mn0 was added alone, effective Tl(I) removal was achieved at high pH levels (>12). The Mn0-H2O2 system was only effective in Tl(I) removal at high pH (>12), while the Mn0-S2O82− or Mn0-ClO-system had excellent Tl(I) removal (>96%) over a broad pH range (4–12). The Mn0-S2O82− oxidation system provided the best resistance to interference from an external organic matrix. The isotherm of Tl(I) removal through the Mn0-S2O82− system followed the Freundlich model. The Mn0 nanomaterials can activate persulfate to produce sulfate radicals and hydroxyl radicals. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy suggested that oxidation-induced precipitation, surface adsorption, and electrostatic attraction are the main mechanisms for Tl(I) removal resulting from the combination of Mn0 and oxidants. Mn0 coupled with S2O82−/ClO is a novel and effective technique for Tl(I) removal, and its application in other fields is worthy of further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adio S O, Asif M, Mohammed A R I, Baig N, Al-Arfaj A A, Saleh T A (2019). Poly (amidoxime) modified magnetic activated carbon for chromium and thallium adsorption: Statistical analysis and regeneration. Process Safety and Environmental Protection, 121: 254–262

    Article  CAS  Google Scholar 

  • Belzile N, Chen Y W (2017). Thallium in the environment: A critical review focused on natural waters, soils, sediments and airborne particles. Applied Geochemistry, 84: 218–243

    Article  CAS  Google Scholar 

  • Bernofsky C, Bandara B M, Hinojosa O (1990). Electron spin resonance studies of the reaction of hypochlorite with 5,5-dimethyl-1-pyrroline-N-oxide. Free Radical Biology & Medicine, 8(3): 231–239

    Article  CAS  Google Scholar 

  • Campanella B, D'Ulivo A, Ghezzi L, Onor M, Petrini R, Bramanti E (2018). Influence of environmental and anthropogenic parameters on thallium oxidation state in natural waters. Chemosphere, 196: 1–8

    Article  CAS  Google Scholar 

  • Casella I G, Spera R (2005). Electrochemical deposition of nickel and nickel-thallium composite oxides films from EDTA alkaline solutions. Journal of Electroanalytical Chemistry, 578(1): 55–62

    Article  CAS  Google Scholar 

  • Cheam V (2001). Thallium contamination of water in Canada. Water Quality Research Journal, 36(4): 851–877

    Article  CAS  Google Scholar 

  • Chen M, Wu P, Yu L, Liu S, Ruan B, Hu H, Zhu N, Lin Z (2017). FeOOH-loaded MnO2 nano-composite: An efficient emergency material for thallium pollution incident. Journal of Environmental Management, 192: 31–38

    Article  CAS  Google Scholar 

  • Chen Y D, Ho S H, Wang D, Wei Z S, Chang J S, Ren N Q (2018). Lead removal by a magnetic biochar derived from persulfate-ZVI treated sludge together with one-pot pyrolysis. Bioresource Technology, 247: 463–470

    Article  CAS  Google Scholar 

  • Cheong Y W, Min J S, Kwon K S (1998). Metal removal efficiencies of substrates for treating acid mine drainage of the Dalsung mine, South Korea. Journal of Geochemical Exploration, 64(1-3): 147–152

    Article  CAS  Google Scholar 

  • Chi T, Zuo J, Liu F L (2017). Performance and mechanism for cadmium and lead adsorption from water and soil by corn straw biochar. Frontiers of Environmental Science & Engineering, 11(2): 15

    Article  CAS  Google Scholar 

  • Chu H A, Sackett H, Babcock G T (2000). Identification of a Mn-O-Mn cluster vibrational mode of the oxygen-evolving complex in photosystem II by low-frequency FTIR spectroscopy. Biochemistry, 39(47): 14371–14376

    Article  CAS  Google Scholar 

  • Coetzee P, Fischer J, Hu M (2004). Simultaneous separation and determination of Tl (I) and Tl (III) by IC-ICP-OES and IC-ICP-MS. Water S.A., 29(1): 17–22

    Article  Google Scholar 

  • Dada A, Adekola F, Odebunmi E (2014). Investigation of the synthesis and characterization of manganese nanoparticles and its ash rice husk supported nanocomposite. In: Proceedings of 1st African International Conference/Workshop on Applications of Nanotechnology to Energy, Health and Environment 2014, Nsukka, Nigeria. Nsukka: UNN, 138–149

    Google Scholar 

  • Dadfarnia S, Assadollahi T, Haji Shabani A M (2007). Speciation and determination of thallium by on-line microcolumn separation/preconcentration by flow injection-flame atomic absorption spectrometry using immobilized oxine as sorbent. Journal of Hazardous Materials, 148(1-2): 446–452

    Article  CAS  Google Scholar 

  • Dashti Khavidaki H, Aghaie H (2013). Adsorption of Thallium (I) ions using eucalyptus leaves powder. CLEAN-Soil, Air, Water, 41(7): 673–679

    Article  CAS  Google Scholar 

  • DelValls T A, Sáenz V, Arias A M (1999). Thallium in the marine environment: first ecotoxicological assessments in the Guadalquivir estuary and its potential adverse effect on the Doana European Natural Reserve after the Aznalcñllar mining spill (SW spain). Ciencias Marinas, 25(2): 161–175

    Article  CAS  Google Scholar 

  • Diao Z H, Xu X R, Chen H, Jiang D, Yang Y X, Kong L J, Sun Y X, Hu Y X, Hao Q W, Liu L (2016). Simultaneous removal of Cr(VI) and phenol by persulfate activated with bentonite-supported nanoscale zero-valent iron: Reactivity and mechanism. Journal of Hazardous Materials, 316: 186–193

    Article  CAS  Google Scholar 

  • Georgi A, Kopinke F D (2005). Interaction of adsorption and catalytic reactions in water decontamination processes: Part I. Oxidation of organic contaminants with hydrogen peroxide catalyzed by activated carbon. Applied Catalysis B: Environmental, 58(1-2): 9–18

    Article  CAS  Google Scholar 

  • Grygo-Szymanko E, Tobiasz A, Walas S (2016). Speciation analysis and fractionation of manganese: A review. TrAC Trends in Analytical Chemistry, 80: 112–124

    Article  CAS  Google Scholar 

  • Huang J, Zhang H (2019). Oxidant or catalyst for oxidation? The role of manganese oxides in the activation of peroxymonosulfate (PMS). Frontiers of Environmental Science & Engineering, 13(5): 65

    Article  CAS  Google Scholar 

  • Huangfu X, Jiang J, Lu X, Wang Y, Liu Y, Pang S Y, Cheng H, Zhang X, Ma J (2015). Adsorption and oxidation of thallium(I) by a nanosized manganese dioxide. Water, Air, & Soil Pollution, 226(1): 2272

    Article  CAS  Google Scholar 

  • Huangfu X, Ma C, Ma J, He Q, Yang C, Zhou J, Jiang J, Wang Y (2017). Effective removal of trace thallium from surface water by nanosized manganese dioxide enhanced quartz sand filtration. Chemosphere, 189: 1–9

    Article  CAS  Google Scholar 

  • Kalaivani S, Muthukrishnaraj A, Sivanesan S, Ravikumar L (2016). Novel hyperbranched polyurethane resins for the removal of heavy metal ions from aqueous solution. Process Safety and Environmental Protection, 104: 11–23

    Article  CAS  Google Scholar 

  • Kaplan D I, Mattigod S V (1998). Aqueous geochemistry of thallium. In: Nriagu J O, ed. Thallium in the Environment. New York, NY, ETATS-UNIS: John Wiley & Sons, 15–30

    Google Scholar 

  • Lan C H, Lin T S (2005). Acute toxicity of trivalent thallium compounds to Daphnia magna. Ecotoxicology and Environmental Safety, 61(3): 432–435

    Article  CAS  Google Scholar 

  • Li D, Jin Z, Zhou Q, Chen J, Lei Y, Sun S (2010). Discrimination of five species of Fritillaria and its extracts by FT-IR and 2D-IR. Journal of Molecular Structure, 974(1-3): 68–72

    Article  CAS  Google Scholar 

  • Li H, Chen Y, Long J, Jiang D, Liu J, Li S, Qi J, Zhang P, Wang J, Gong J, Wu Q, Chen D (2017a). Simultaneous removal of thallium and chloride from a highly saline industrial wastewater using modified anion exchange resins. Journal of Hazardous Materials, 333: 179–185

    Article  CAS  Google Scholar 

  • Li H, Chen Y, Long J, Li X, Jiang D, Zhang P, Qi J, Huang X, Liu J, Xu R, Gong J (2017b). Removal of thallium from aqueous solutions using Fe-Mn binary oxides. Journal of Hazardous Materials, 338: 296–305

    Article  CAS  Google Scholar 

  • Li H, Li X, Long J, Li K, Chen Y, Jiang J, Chen X, Zhang P (2019a). Oxidation and removal of thallium and organics from wastewater using a zero-valent-iron-based Fenton-like technique. Journal of Cleaner Production, 221: 89–97

    Article  CAS  Google Scholar 

  • Li H, Xiong J, Xiao T, Long J, Wang Q, Li K, Liu X, Zhang G, Zhang H (2019b). Biochar derived from watermelon rinds as regenerable adsorbent for efficient removal of thallium(I) from wastewater. Process Safety and Environmental Protection, 127: 257–266

    Article  CAS  Google Scholar 

  • Li H, Xiong J, Zhang G, Liang A, Long J, Xiao T, Chen Y, Zhang P, Liao D, Lin L, Zhang H (2020a). Enhanced thallium(I) removal from wastewater using hypochlorite oxidation coupled with magnetitebased biochar adsorption. Science of the Total Environment, 698: 134166

    Article  CAS  Google Scholar 

  • Li H S, Li X W, Chen Y H, Long J Y, Zhang G S, Xiao T F, Zhang P, Li C L, Zhuang L Z, Huang W Y (2018a). Removal and recovery of thallium from aqueous solutions via a magnetite-mediated reversible adsorption-desorption process. Journal of Cleaner Production, 199: 705–715

    Article  CAS  Google Scholar 

  • Li H S, Li X W, Xiao T F, Chen Y H, Long J Y, Zhang G S, Zhang P, Li C L, Zhuang L Z, Li K K (2018b). Efficient removal of thallium(I) from wastewater using flower-like manganese dioxide coated magnetic pyrite cinder. Chemical Engineering Journal, 353: 867–877

    Article  CAS  Google Scholar 

  • Li H S, Long J Y, Li X W, Li K K, Xu L L, Lai J P, Chen Y H, Zhang P (2018c). Aqueous biphasic separation of thallium from aqueous solution using alcohols and salts. Desalination and Water Treatment, 123: 330–337

    Article  CAS  Google Scholar 

  • Li H S, Zhang H G, Long J Y, Zhang P, Chen Y H (2019c). Combined Fenton process and sulfide precipitation for removal of heavy metals from industrial wastewater: Bench and pilot scale studies focusing on in-depth thallium removal. Frontiers of Environmental Science & Engineering, 13(4): 49

    Article  CAS  Google Scholar 

  • Li K, Li H, Xiao T, Long J, Zhang G, Li Y, Liu X, Liang Z, Zheng F, Zhang P (2019d). Synthesis of manganese dioxide with different morphologies for thallium removal from wastewater. Journal of Environmental Management, 251: 109563

    Article  CAS  Google Scholar 

  • Li K, Li H, Xiao T, Zhang G, Long J, Luo D, Zhang H, Xiong J, Wang Q (2018d). Removal of thallium from wastewater by a combination of persulfate oxidation and iron coagulation. Process Safety and Environmental Protection, 119: 340–349

    Article  CAS  Google Scholar 

  • Li S, Qi L, Lu L, Wang H (2012). Facile preparation and performance of mesoporous manganese oxide for supercapacitors utilizing neutral aqueous electrolytes. RSC Advances, 2(8): 3298–3308

    Article  CAS  Google Scholar 

  • Li S, Wang W, Liang F, Zhang WX (2017c). Heavy metal removal using nanoscale zero-valent iron (nZVI): Theory and application. Journal of Hazardous Materials, 322(Pt A): 163–171

    Article  CAS  Google Scholar 

  • Li Y, Li H, Liu F, Zhang G, Xu Y, Xiao T, Long J, Chen Z, Liao D, Zhang J, Lin L, Zhang P (2020b). Zero-valent iron-manganese bimetallic nanocomposites catalyze hypochlorite for enhanced thallium(I) oxidation and removal from wastewater: Materials characterization, process optimization and removal mechanisms. Journal of Hazardous Materials, 386: 121900

    Article  CAS  Google Scholar 

  • Liu J, Wang J, Chen Y, Lippold H, Xiao T, Li H, Shen C C, Xie L, Xie X, Yang H (2017a). Geochemical transfer and preliminary health risk assessment of thallium in a riverine system in the Pearl River Basin, South China. Journal of Geochemical Exploration, 176: 64–75

    Article  CAS  Google Scholar 

  • Liu Y, Wang L, Wang X, Huang Z, Xu C, Yang T, Zhao X, Qi J, Ma J (2017b). Highly efficient removal of trace thallium from contaminated source waters with ferrate: Role of in situ formed ferric nanoparticle. Water Research, 124: 149–157

    Article  CAS  Google Scholar 

  • Martin L A, Wissocq A, Benedetti M F, Latrille C (2018). Thallium (Tl) sorption onto illite and smectite: Implications for Tl mobility in the environment. Geochimica et Cosmochimica Acta, 230: 1–16

    Article  CAS  Google Scholar 

  • Memon S Q, Memon N, Solangi A R, Memon J U R (2008). Sawdust: A green and economical sorbent for thallium removal. Chemical Engineering Journal, 140(1-3): 235–240

    Article  CAS  Google Scholar 

  • Nilchi A, Shariati TDehaghan S, Rasouli Garmarodi (2013). Kinetics, isotherm and thermodynamics for uranium and thorium ions adsorption from aqueous solutions by crystalline tin oxide nanoparticles. Desalination, 321: 67–71

    Article  CAS  Google Scholar 

  • Nriagu J O (1998). Thallium in the Environment. New York, NY, ETATS-UNIS: John Wiley & Sons

    Google Scholar 

  • Pan Z, Qiu Y, Yang J, Ye F, Xu Y, Zhang X, Liu M, Zhang Y (2016). Ultra-endurance flexible all-solid-state asymmetric supercapacitors based on three-dimensionally coated MnOx nanosheets on nanoporous current collectors. Nano Energy, 26: 610–619

    Article  CAS  Google Scholar 

  • Panda A P, Rout P, Jena K K, Alhassan S M, Kumar S A, Jha U, Dey R, Swain S (2019). Core-shell structured zero-valent manganese (ZVM): A novel nanoadsorbent for efficient removal of As (iii) and As (v) from drinking water. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 7(16): 9933–9947

    Article  CAS  Google Scholar 

  • Parida K M, Mallick S, Mohapatra B K, Misra V N (2004). Studies on manganese-nodule leached residues; 1. Physicochemical characterization and its adsorption behavior toward Ni2+ in aqueous system. Journal of Colloid and Interface Science, 277(1): 48–54

    Article  CAS  Google Scholar 

  • Peter A L, Viraraghavan T (2005). Thallium: a review of public health and environmental concerns. Environment International, 31(4): 493–501

    Article  CAS  Google Scholar 

  • Rao P, Mak M S, Liu T, Lai K C, Lo I M (2009). Effects of humic acid on arsenic(V) removal by zero-valent iron from groundwater with special references to corrosion products analyses. Chemosphere, 75 (2): 156–162

    Article  CAS  Google Scholar 

  • Reddy A L M, Ramaprabhu S (2007). Hydrogen storage properties of nanocrystalline Pt dispersed multi-walled carbon nanotubes. International Journal of Hydrogen Energy, 32(16): 3998–4004

    Article  CAS  Google Scholar 

  • Rodríguez-Mercado J J, Mosqueda-Tapia G, Altamirano-Lozano M A (2017). Genotoxicity assessment of human peripheral Lymphocytes induced by thallium(I) and thallium(III). Toxicological and Environmental Chemistry, 99(5-6): 987–998

    Article  CAS  Google Scholar 

  • Shah N S, Ali Khan J, Sayed M, Ul Haq Khan Z, Sajid Ali H, Murtaza B, Khan H M, Imran M, Muhammad N (2019). Hydroxyl and sulfate radical mediated degradation of ciprofloxacin using nano zerovalent manganese catalyzed S2O82-. Chemical Engineering Journal, 356: 199–209

    Article  CAS  Google Scholar 

  • Smith I C, Carson B L (1977). Volume I. Thallium. In: Smith I C, Carson B L, editors, Trace Metals in the Environment. Michigan: 72 Ann Arbor Science Publishers Inc. Ann Arbor, 406

    Google Scholar 

  • Sorge A R, Turco M, Pilone G, Bagnasco G (2004). Decomposition of hydrogen peroxide on MnO2/TiO2 catalysts. Journal of Propulsion and Power, 20(6): 1069–1075

    Article  CAS  Google Scholar 

  • Taşar Ş, Kaya F, Özer A (2014). Biosorption of lead (II) ions from aqueous solution by peanut shells: Equilibrium, thermodynamic and kinetic studies. Journal of Environmental Chemical Engineering, 2 (2): 1018–1026

    Article  CAS  Google Scholar 

  • Tripathy S S, Bersillon J L, Gopal K (2006). Adsorption of Cd2+ on hydrous manganese dioxide from aqueous solutions. Desalination, 194(1-3): 11–21

    Article  CAS  Google Scholar 

  • Tyagi R, Rana P, Khan A R, Bhatnagar D, Devi M M, Chaturvedi S, Tripathi R P, Khushu S (2011). Study of acute biochemical effects of thallium toxicity in mouse urine by NMR spectroscopy. Journal of Applied Toxicology, 31(7): 663–670

    Article  CAS  Google Scholar 

  • Vaněk A, Grösslová Z, Mihaljevič M, Ettler V, Trubač J, Chrastný V, Penížek V, Teper L, Cabala J, Voegelin A, Zádorová T, Oborná V, Drábek O, Holubík O, Houška J, Pavlů L, Ash C (2018). Thallium isotopes in metallurgical wastes/contaminated soils: A novel tool to trace metal source and behavior. Journal of Hazardous Materials, 343: 78–85

    Article  CAS  Google Scholar 

  • Verstraeten S V, Lucangioli S, Galleano M (2009). ESR characterization of thallium(III)-mediated nitrones oxidation. Inorganica Chimica Acta, 362(7): 2305–2310

    Article  CAS  Google Scholar 

  • Wan S, Ma M, Lv L, Qian L, Xu S, Xue Y, Ma Z (2014). Selective capture of thallium (I) ion from aqueous solutions by amorphous hydrous manganese dioxide. Chemical Engineering Journal, 239: 200–206

    Article  CAS  Google Scholar 

  • Wang X, Lian W, Sun X, Ma J, Ning P (2018a). Immobilization of NZVI in polydopamine surface-modified biochar for adsorption and degradation of tetracycline in aqueous solution. Frontiers of Environmental Science & Engineering, 12(4): 9

    Article  CAS  Google Scholar 

  • Wang Z, Xiong W, Tebo B M, Giammar D E (2014). Oxidative UO2 dissolution induced by soluble Mn(III). Environmental Science & Technology, 48(1): 289–298

    Article  CAS  Google Scholar 

  • Wang Z, Zhang B, Jiang Y, Li Y, He C (2018b). Spontaneous thallium (I) oxidation with electricity generation in single-chamber microbial fuel cells. Applied Energy, 209: 33–42

    Article  CAS  Google Scholar 

  • Wei G, Zhang J, Luo J, Xue H, Huang D, Cheng Z, Jiang X (2019). Nanoscale zero-valent iron supported on biochar for the highly efficient removal of nitrobenzene. Frontiers of Environmental Science & Engineering, 13(4): 61

    Article  CAS  Google Scholar 

  • Wick S, Baeyens B, Marques Fernandes M, Voegelin A (2018). Thallium adsorption onto illite. Environmental Science & Technology, 52(2): 571–580

    Article  CAS  Google Scholar 

  • Xiao T, Yang F, Li S, Zheng B, Ning Z (2012). Thallium pollution in China: A geo-environmental perspective. Science of the Total Environment, 421-422: 51–58

    Article  CAS  Google Scholar 

  • Xu R B, Su M H, Huang X X, Chen D Y, Long J Y, Liu Y H, Kong L J, Li H S (2019). Efficient removal of thallium and EDTA from aqueous solution via the Fenton process. Desalination and Water Treatment, 154: 166–176

    Article  CAS  Google Scholar 

  • Yu H Y, Chang C, Li F, Wang Q, Chen M, Zhang J (2018). Thallium in flowering cabbage and lettuce: Potential health risks for local residents of the Pearl River Delta, South China. Environmental Pollution, 241: 626–635

    Article  CAS  Google Scholar 

  • Zeng H, Tian S, Liu H, Chai B, Zhao X (2016). Photo-assisted electrolytic decomplexation of Cu-EDTA and Cu recovery enhanced by H2O2 and electro-generated active chlorine. Chemical Engineering Journal, 301: 371–379

    Article  CAS  Google Scholar 

  • Zhang G, Fan F, Li X, Qi J, Chen Y (2018). Superior adsorption of thallium(I) on titanium peroxide: Performance and mechanism. Chemical Engineering Journal, 331: 471–479

    Article  CAS  Google Scholar 

  • Zhang H, Li M, Yang Z, Sun Y, Yan J, Chen D, Chen Y (2017). Isolation of a non-traditional sulfate reducing-bacteria Citrobacter freundii sp. and bioremoval of thallium and sulfate. Ecological Engineering, 102: 397–403

    Article  Google Scholar 

  • Zhao Y S, Lin L, Hong M (2019). Nitrobenzene contamination of groundwater in a petrochemical industry site. Frontiers of Environmental Science & Engineering, 13(2): 29

    Article  CAS  Google Scholar 

  • Zhi S, Tian L, Li N, Zhang K (2018). A novel system of MnO2-mullitecordierite composite particle with NaClO for Methylene blue decolorization. Journal of Environmental Management, 213: 392–399

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Grant Nos. 51808144, 51678562, and 41830753), the Science and Technology Program of Guangzhou (Nos. 201906010037 and 201804010281), and the Guangdong Natural Science Foundation (No. 2018A0303130265).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huosheng Li or Jianyou Long.

Additional information

Highlights

• Nano zero-valent manganese (nZVMn, Mn0) is synthesized via borohydrides reduction.

• Mn0 combined with persulfate/hypochlorite is effective for Tl removal at pH 6–12.

• Mn0 can activate persulfate to form hydroxyl and sulfate radicals.

• Oxidation-induced precipitation and surface complexation contribute to Tl removal.

• Combined Mn0-oxidants process is promising in the environmental field.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, K., Li, H., Xiao, T. et al. Zero-valent manganese nanoparticles coupled with different strong oxidants for thallium removal from wastewater. Front. Environ. Sci. Eng. 14, 34 (2020). https://doi.org/10.1007/s11783-019-1213-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11783-019-1213-5

Keywords

Navigation