Skip to main content
Log in

Mechanism of dichloromethane disproportionation over mesoporous TiO2 under low temperature

  • Research Article
  • Published:
Frontiers of Environmental Science & Engineering Aims and scope Submit manuscript

Abstract

Mesoporous TiO2 was synthesized via nonhydrolytic template-mediated sol-gel route. Catalytic degradation performance upon dichloromethane over as-prepared mesoporous TiO2, pure anatase and rutile were investigated respectively. Disproportionation took place over as-made mesoporous TiO2 and pure anatase under the presence of water. The mechanism of disproportionation was studied by in situ FTIR. The interaction between chloromethoxy species and bridge coordinated methylenes was the key step of disproportionation. Formate species and methoxy groups would be formed and further turned into carbon monoxide and methyl chloride. Anatase (001) played an important role for disproportionation in that water could be dissociated into surface hydroxyl groups on such structure. As a result, the consumed hydroxyl groups would be replenished. In addition, there was another competitive oxidation route governed by free hydroxyl radicals. In this route, chloromethoxy groups would be oxidized into formate species by hydroxyl radicals transfering from the surface of TiO2. The latter route would be more favorable at higher temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aranzabal A, Romero-Sáez M, Elizundia U, González-Velasco J R, González-Marcos J A (2016). The effect of deactivation of h-zeolites on product selectivity in the oxidation of chlorinated VOCs (trichloroethylene). Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 91(2): 318–326

    Article  CAS  Google Scholar 

  • Cao S, Shi M, Wang H, Yu F, Weng X, Liu Y, Wu Z (2016a). A twostage Ce/TiO2–Cu/CeO2 catalyst with separated catalytic functions for deep catalytic combustion of CH2Cl2. Chemical Engineering Journal, 290: 147–153

    Article  CAS  Google Scholar 

  • Cao S, Wang H, Yu F, Shi M, Chen S, Weng X, Liu Y, Wu Z (2016b). Catalyst performance and mechanism of catalytic combustion of dichloromethane (CH2Cl2) over Ce doped TiO2. Journal of Colloid and Interface Science, 463: 233–241

    Article  CAS  Google Scholar 

  • Chen L, Yao B, Cao Y, Fan K (2007). Synthesis of well-ordered mesoporous Titania with tunable phase content and high photoactivity. Journal of Physical Chemistry C, 111(32): 11849–11853

    Article  CAS  Google Scholar 

  • Clausse B T, Garrot B, Cornier C, Paulin C, Simonot-Grange M H, Boutros F (1998). Adsorption of chlorinated volatile organic compounds on hydrophobic faujasite: Correlation between the thermodynamic and kinetic properties and the prediction of air cleaning. Microporous and Mesoporous Materials, 25(1): 169–177

    Article  CAS  Google Scholar 

  • Dai C, Zhou Y, Peng H, Huang S, Qin P, Zhang J, Yang Y, Luo L, Zhang X (2018). Current progress in remediation of chlorinated volatile organic compounds: A review. Journal of Industrial and Engineering Chemistry, 62: 106–119

    Article  CAS  Google Scholar 

  • Dai Q, Bai S, Wang J, Li M, Wang X, Lu G (2013a). The effect of TiO2 doping on catalytic performances of Ru/CeO2 catalysts during catalytic combustion of chlorobenzene. Applied Catalysis B: Environmental, 142–143: 222–233

    Article  CAS  Google Scholar 

  • Dai Q, Bai S, Wang X, Lu G (2013b). Catalytic combustion of chlorobenzene over Ru-doped ceria catalysts: Mechanism study. Applied Catalysis B: Environmental, 129: 580–588

    Article  CAS  Google Scholar 

  • Dai Q G, Wang W, Wang X Y, Lu G Z (2017). Sandwich-structured CeO2@ZSM-5 hybrid composites for catalytic oxidation of 1,2- dichloroethane: An integrated solution to coking and chlorine poisoning deactivation. Applied Catalysis B: Environmental, 203: 31–42

    Article  CAS  Google Scholar 

  • Dai Q G, Wang X Y, Lu G Z (2008). Low-temperature catalytic combustion of trichloroethylene over cerium oxide and catalyst deactivation. Applied Catalysis B: Environmental, 81(3–4): 192–202

    Article  CAS  Google Scholar 

  • Dai Y, Wang X Y, Li D, Dai Q G (2011). Catalytic combustion of chlorobenzene over Mn-Ce-La-O mixed oxide catalysts. Journal of Hazardous Materials, 188(1–3): 132–139

    CAS  Google Scholar 

  • Gallastegi-Villa M, Romero-Sáez M, Aranzabal A, González-Marcos J A, González-Velasco J R (2013). Strategies to enhance the stability of h-bea zeolite in the catalytic oxidation of Cl-VOCs: 1,2-dichloroethane. Catalysis Today, 213: 192–197

    Article  CAS  Google Scholar 

  • Greenler R G (1962). Infrared study of the adsorption of methanol and ethanol on aluminum oxide. Journal of Chemical Physics, 37(9): 2094–2100

    Article  CAS  Google Scholar 

  • Guo L, Jiang N, Li J, Shang K, Lu N, Wu Y (2018). Abatement of mixed volatile organic compounds in a catalytic hybrid surface/packed-bed discharge plasma reactor. Frontiers of Environmental Science & Engineering, 12(2): 15

    Article  CAS  Google Scholar 

  • Huang B, Lei C, Wei C, Zeng G (2014). Chlorinated volatile organic compounds (Cl-VOCs) in environment- sources, potential human health impacts, and current remediation technologies. Environment International, 71: 118–138

    Article  CAS  Google Scholar 

  • Jo W K, Park K H (2004). Heterogeneous photocatalysis of aromatic and chlorinated volatile organic compounds (VOCs) for non-occupational indoor air application. Chemosphere, 57(7): 555–565

    Article  CAS  Google Scholar 

  • Kang I S, Xi J Y, Hu H Y (2018). Photolysis and photooxidation of typical gaseous VOCs by UV Irradiation: Removal performance and mechanisms. Frontiers of Environmental Science & Engineering, 12(3): 8

    Article  CAS  Google Scholar 

  • Kozlov D V, Paukshtis E A, Savinov E N (2000). The comparative studies of titanium dioxide in gas-phase ethanol photocatalytic oxidation by the ftir in situ method. Applied Catalysis B: Environmental, 24(1): L7–L12

    Article  CAS  Google Scholar 

  • Long C, Liu P, Li Y, Li A, Zhang Q (2011). Characterization of hydrophobic hypercrosslinked polymer as an adsorbent for removal of chlorinated volatile organic compounds. Environmental Science & Technology, 45(10): 4506–4512

    Article  CAS  Google Scholar 

  • Maira A J, Coronado J M, Augugliaro V, Yeung K L, Conesa J C, Soria J (2001). Fourier transform infrared study of the performance of nanostructured TiO2 particles for the photocatalytic oxidation of gaseous toluene. Journal of Catalysis, 202(2): 413–420

    Article  CAS  Google Scholar 

  • Martínez Vargas D X, Rivera De la Rosa J, Lucio-Ortiz C J, Hernández-Ramirez A, Flores-Escamilla G A, Garcia C D (2015). Photocatalytic degradation of trichloroethylene in a continuous annular reactor using Cu-doped TiO2 catalysts by sol–gel synthesis. Applied Catalysis B: Environmental, 179: 249–261

    Article  CAS  Google Scholar 

  • Maupin I, Pinard L, Mijoin J, Magnoux P (2012). Bifunctional mechanism of dichloromethane oxidation over Pt/Al2O3: CH2Cl2 disproportionation over alumina and oxidation over platinum. Journal of Catalysis, 291: 104–109

    Article  CAS  Google Scholar 

  • Mei J, Zhao S, Huang W, Qu Z, Yan N (2016). Mn-promoted Co3O4/ TiO2 as an efficient catalyst for catalytic oxidation of dibromomethane (CH2Br2). Journal of Hazardous Materials, 318: 1–8

    Article  CAS  Google Scholar 

  • Pinard L, Mijoin J, Ayrault P, Canaff C, Magnoux P (2004). On the mechanism of the catalytic destruction of dichloromethane over Pt zeolite catalysts. Applied Catalysis B: Environmental, 51(1): 1–8

    Article  CAS  Google Scholar 

  • Pinard L, Mijoin J, Magnoux P, Guisnet M (2003). Oxidation of chlorinated hydrocarbons over Pt zeolite catalysts 1-mechanism of dichloromethane transformation over PtNaY catalysts. Journal of Catalysis, 215(2): 234–244

    Article  CAS  Google Scholar 

  • Pitkäaho S, Nevanperä T, Matejova L, Ojala S, Keiski R L (2013). Oxidation of dichloromethane over Pt, Pd, Rh, and V2O5 catalysts supported on Al2O3, Al2O3–TiO2 and Al2O3–CeO2. Applied Catalysis B: Environmental, 138–139: 33–42

    Article  CAS  Google Scholar 

  • Primet M, Pichat P, Mathieu M V (1971). Infrared study of the surface of titanium dioxides. I. Hydroxyl groups. Journal of Physical Chemistry, 75(9): 1216–1220

    Article  CAS  Google Scholar 

  • Ran L, Qin Z, Wang Z Y, Wang X Y, Dai Q G (2013). Catalytic decomposition of CH2Cl2 over supported Ru catalysts. Catalysis Communications, 37: 5–8

    Article  CAS  Google Scholar 

  • Shi Z, Yang P, Tao F, Zhou R (2016). New insight into the structure of CeO2–TiO2 mixed oxides and their excellent catalytic performances for 1,2-dichloroethane oxidation. Chemical Engineering Journal, 295: 99–108

    Article  CAS  Google Scholar 

  • Sinquin G, Petit C, Libs S, Hindermann J P, Kiennemann A (2000). Catalytic destruction of chlorinated C1 volatile organic compounds (CVOCs) reactivity, oxidation and hydrolysis mechanisms. Applied Catalysis B: Environmental, 27(2): 105–115

    Article  CAS  Google Scholar 

  • Sun P, Wang W, Dai X, Weng X, Wu Z (2016). Mechanism study on catalytic oxidation of chlorobenzene over MnxCe1-xO2/H-ZSM5 catalysts under dry and humid conditions. Applied Catalysis B: Environmental, 198: 389–397

    Article  CAS  Google Scholar 

  • van den Brink R W, Mulder P, Louw R, Sinquin G, Petit C, Hindermann J P (1998). Catalytic oxidation of dichloromethane on γ-Al2O3: A combined flow and infrared spectroscopic study. Journal of Catalysis, 180(2): 153–160

    Article  Google Scholar 

  • Vittadini A, Selloni A, Rotzinger F P, Grätzel M (1998). Structure and energetics of water adsorbed at TiO2 anatase (101) and (001) surfaces. Physical Review Letters, 81(14): 2954–2957

    Article  CAS  Google Scholar 

  • Wang J, Liu X, Zeng J, Zhu T (2016). Catalytic oxidation of trichloroethylene over TiO2 supported ruthenium catalysts. Catalysis Communications, 76: 13–18

    Article  CAS  Google Scholar 

  • Wang J, Wang X, Liu X, Zeng J, Guo Y, Zhu T (2015a). Kinetics and mechanism study on catalytic oxidation of chlorobenzene over V2O5/ TiO2 catalysts. Journal of Molecular Catalysis A Chemical, 402: 1–9

    Article  CAS  Google Scholar 

  • Wang J, Wang X, Liu X, Zhu T, Guo Y, Qi H (2015b). Catalytic oxidation of chlorinated benzenes over V2O5/TiO2 catalysts: The effects of chlorine substituents. Catalysis Today, 241: 92–99

    Article  CAS  Google Scholar 

  • Wang X Y, Kang Q, Li D (2008). Low-temperature catalytic combustion of chlorobenzene over MnOx-CeO2 mixed oxide catalysts. Catalysis Communications, 9(13): 2158–2162

    Article  CAS  Google Scholar 

  • Wang Y, Jia A P, Luo M F, Lu J Q (2015c). Highly active spinel type CoCr2O4 catalysts for dichloromethane oxidation. Applied Catalysis B: Environmental, 165: 477–486

    Article  CAS  Google Scholar 

  • Xia Y, Zhu K, Kaspar T C, Du Y, Birmingham B, Park K T, Zhang Z (2013). Atomic structure of the anatase TiO2(001) surface. Journal of Physical Chemistry Letters, 4(17): 2958–2963

    Article  CAS  Google Scholar 

  • Yang H G, Sun C H, Qiao S Z, Zou J, Liu G, Smith S C, Cheng H M, Lu G Q (2008). Anatase TiO2 single crystals with a large percentage of reactive facets. Nature, 453(7195): 638–641

    Article  CAS  Google Scholar 

  • Yang P, Shi Z, Yang S, Zhou R (2015). High catalytic performances of CeO2–CrOx catalysts for chlorinated VOCs elimination. Chemical Engineering Science, 126: 361–369

    Article  CAS  Google Scholar 

  • Yang P, Yang S, Shi Z, Tao F, Guo X, Zhou R (2016). Accelerating effect of ZrO2 doping on catalytic performance and thermal stability of CeO2–CrOx mixed oxide for 1,2-dichloroethane elimination. Chemical Engineering Journal, 285: 544–553

    Article  CAS  Google Scholar 

  • Yang P, Zuo S, Zhou R (2017). Synergistic catalytic effect of (Ce,Cr)xO2 and HZSM-5 for elimination of chlorinated organic pollutants. Chemical Engineering Journal, 323: 160–170

    Article  CAS  Google Scholar 

  • Zhang L L, Liu S Y, Li Z J, Yao J, Wang G Y (2014). Catalytic combustion of dichloromethane over Cr-13X and K-Cr-13X zeolites catalysts. Chemical Journal of Chinese Universities-Chinese, 35(4): 812–817

    CAS  Google Scholar 

  • Zhang X, Pei Z, Ning X, Lu H, Huang H (2015). Catalytic lowtemperature combustion of dichloromethane over V–Ni/TiO2 catalyst. RSC Advances, 5(96): 79192–79199

    Article  CAS  Google Scholar 

  • Zuo G M, Cheng Z X, Chen H, Li G W, Miao T (2006). Study on photocatalytic degradation of several volatile organic compounds. Journal of Hazardous Materials, 128(2): 158–163

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Key Program of the Chinese Academy of Sciences (No. ZDRW-ZS-2016-5-3) and National Key Research and Development Program of China (Grant No. 2017YFC0211503).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunfa Chen.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, Y., Peng, S., Liu, H. et al. Mechanism of dichloromethane disproportionation over mesoporous TiO2 under low temperature. Front. Environ. Sci. Eng. 13, 21 (2019). https://doi.org/10.1007/s11783-019-1113-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11783-019-1113-8

Keywords

Navigation