Advertisement

Mechanism of dichloromethane disproportionation over mesoporous TiO2 under low temperature

  • Yuzhou Deng
  • Shengpan Peng
  • Haidi Liu
  • Shuangde Li
  • Yunfa ChenEmail author
Research Article
  • 18 Downloads

Abstract

Mesoporous TiO2 was synthesized via nonhydrolytic template-mediated sol-gel route. Catalytic degradation performance upon dichloromethane over as-prepared mesoporous TiO2, pure anatase and rutile were investigated respectively. Disproportionation took place over as-made mesoporous TiO2 and pure anatase under the presence of water. The mechanism of disproportionation was studied by in situ FTIR. The interaction between chloromethoxy species and bridge coordinated methylenes was the key step of disproportionation. Formate species and methoxy groups would be formed and further turned into carbon monoxide and methyl chloride. Anatase (001) played an important role for disproportionation in that water could be dissociated into surface hydroxyl groups on such structure. As a result, the consumed hydroxyl groups would be replenished. In addition, there was another competitive oxidation route governed by free hydroxyl radicals. In this route, chloromethoxy groups would be oxidized into formate species by hydroxyl radicals transfering from the surface of TiO2. The latter route would be more favorable at higher temperature.

Keywords

Dichloromethane Disproportionation Mechanism Anatase (001) Water dissociation 

Notes

Acknowledgements

This work was supported by Key Program of the Chinese Academy of Sciences (No. ZDRW-ZS-2016-5-3) and National Key Research and Development Program of China (Grant No. 2017YFC0211503).

Supplementary material

11783_2019_1113_MOESM1_ESM.pdf (158 kb)
Supplementary material, approximately 158 KB.

References

  1. Aranzabal A, Romero-Sáez M, Elizundia U, González-Velasco J R, González-Marcos J A (2016). The effect of deactivation of h-zeolites on product selectivity in the oxidation of chlorinated VOCs (trichloroethylene). Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 91(2): 318–326CrossRefGoogle Scholar
  2. Cao S, Shi M, Wang H, Yu F, Weng X, Liu Y, Wu Z (2016a). A twostage Ce/TiO2–Cu/CeO2 catalyst with separated catalytic functions for deep catalytic combustion of CH2Cl2. Chemical Engineering Journal, 290: 147–153CrossRefGoogle Scholar
  3. Cao S, Wang H, Yu F, Shi M, Chen S, Weng X, Liu Y, Wu Z (2016b). Catalyst performance and mechanism of catalytic combustion of dichloromethane (CH2Cl2) over Ce doped TiO2. Journal of Colloid and Interface Science, 463: 233–241CrossRefGoogle Scholar
  4. Chen L, Yao B, Cao Y, Fan K (2007). Synthesis of well-ordered mesoporous Titania with tunable phase content and high photoactivity. Journal of Physical Chemistry C, 111(32): 11849–11853CrossRefGoogle Scholar
  5. Clausse B T, Garrot B, Cornier C, Paulin C, Simonot-Grange M H, Boutros F (1998). Adsorption of chlorinated volatile organic compounds on hydrophobic faujasite: Correlation between the thermodynamic and kinetic properties and the prediction of air cleaning. Microporous and Mesoporous Materials, 25(1): 169–177CrossRefGoogle Scholar
  6. Dai C, Zhou Y, Peng H, Huang S, Qin P, Zhang J, Yang Y, Luo L, Zhang X (2018). Current progress in remediation of chlorinated volatile organic compounds: A review. Journal of Industrial and Engineering Chemistry, 62: 106–119CrossRefGoogle Scholar
  7. Dai Q, Bai S, Wang J, Li M, Wang X, Lu G (2013a). The effect of TiO2 doping on catalytic performances of Ru/CeO2 catalysts during catalytic combustion of chlorobenzene. Applied Catalysis B: Environmental, 142–143: 222–233CrossRefGoogle Scholar
  8. Dai Q, Bai S, Wang X, Lu G (2013b). Catalytic combustion of chlorobenzene over Ru-doped ceria catalysts: Mechanism study. Applied Catalysis B: Environmental, 129: 580–588CrossRefGoogle Scholar
  9. Dai Q G, Wang W, Wang X Y, Lu G Z (2017). Sandwich-structured CeO2@ZSM-5 hybrid composites for catalytic oxidation of 1,2- dichloroethane: An integrated solution to coking and chlorine poisoning deactivation. Applied Catalysis B: Environmental, 203: 31–42CrossRefGoogle Scholar
  10. Dai Q G, Wang X Y, Lu G Z (2008). Low-temperature catalytic combustion of trichloroethylene over cerium oxide and catalyst deactivation. Applied Catalysis B: Environmental, 81(3–4): 192–202CrossRefGoogle Scholar
  11. Dai Y, Wang X Y, Li D, Dai Q G (2011). Catalytic combustion of chlorobenzene over Mn-Ce-La-O mixed oxide catalysts. Journal of Hazardous Materials, 188(1–3): 132–139Google Scholar
  12. Gallastegi-Villa M, Romero-Sáez M, Aranzabal A, González-Marcos J A, González-Velasco J R (2013). Strategies to enhance the stability of h-bea zeolite in the catalytic oxidation of Cl-VOCs: 1,2-dichloroethane. Catalysis Today, 213: 192–197CrossRefGoogle Scholar
  13. Greenler R G (1962). Infrared study of the adsorption of methanol and ethanol on aluminum oxide. Journal of Chemical Physics, 37(9): 2094–2100CrossRefGoogle Scholar
  14. Guo L, Jiang N, Li J, Shang K, Lu N, Wu Y (2018). Abatement of mixed volatile organic compounds in a catalytic hybrid surface/packed-bed discharge plasma reactor. Frontiers of Environmental Science & Engineering, 12(2): 15CrossRefGoogle Scholar
  15. Huang B, Lei C, Wei C, Zeng G (2014). Chlorinated volatile organic compounds (Cl-VOCs) in environment- sources, potential human health impacts, and current remediation technologies. Environment International, 71: 118–138CrossRefGoogle Scholar
  16. Jo W K, Park K H (2004). Heterogeneous photocatalysis of aromatic and chlorinated volatile organic compounds (VOCs) for non-occupational indoor air application. Chemosphere, 57(7): 555–565CrossRefGoogle Scholar
  17. Kang I S, Xi J Y, Hu H Y (2018). Photolysis and photooxidation of typical gaseous VOCs by UV Irradiation: Removal performance and mechanisms. Frontiers of Environmental Science & Engineering, 12(3): 8CrossRefGoogle Scholar
  18. Kozlov D V, Paukshtis E A, Savinov E N (2000). The comparative studies of titanium dioxide in gas-phase ethanol photocatalytic oxidation by the ftir in situ method. Applied Catalysis B: Environmental, 24(1): L7–L12CrossRefGoogle Scholar
  19. Long C, Liu P, Li Y, Li A, Zhang Q (2011). Characterization of hydrophobic hypercrosslinked polymer as an adsorbent for removal of chlorinated volatile organic compounds. Environmental Science & Technology, 45(10): 4506–4512CrossRefGoogle Scholar
  20. Maira A J, Coronado J M, Augugliaro V, Yeung K L, Conesa J C, Soria J (2001). Fourier transform infrared study of the performance of nanostructured TiO2 particles for the photocatalytic oxidation of gaseous toluene. Journal of Catalysis, 202(2): 413–420CrossRefGoogle Scholar
  21. Martínez Vargas D X, Rivera De la Rosa J, Lucio-Ortiz C J, Hernández-Ramirez A, Flores-Escamilla G A, Garcia C D (2015). Photocatalytic degradation of trichloroethylene in a continuous annular reactor using Cu-doped TiO2 catalysts by sol–gel synthesis. Applied Catalysis B: Environmental, 179: 249–261CrossRefGoogle Scholar
  22. Maupin I, Pinard L, Mijoin J, Magnoux P (2012). Bifunctional mechanism of dichloromethane oxidation over Pt/Al2O3: CH2Cl2 disproportionation over alumina and oxidation over platinum. Journal of Catalysis, 291: 104–109CrossRefGoogle Scholar
  23. Mei J, Zhao S, Huang W, Qu Z, Yan N (2016). Mn-promoted Co3O4/ TiO2 as an efficient catalyst for catalytic oxidation of dibromomethane (CH2Br2). Journal of Hazardous Materials, 318: 1–8CrossRefGoogle Scholar
  24. Pinard L, Mijoin J, Ayrault P, Canaff C, Magnoux P (2004). On the mechanism of the catalytic destruction of dichloromethane over Pt zeolite catalysts. Applied Catalysis B: Environmental, 51(1): 1–8CrossRefGoogle Scholar
  25. Pinard L, Mijoin J, Magnoux P, Guisnet M (2003). Oxidation of chlorinated hydrocarbons over Pt zeolite catalysts 1-mechanism of dichloromethane transformation over PtNaY catalysts. Journal of Catalysis, 215(2): 234–244CrossRefGoogle Scholar
  26. Pitkäaho S, Nevanperä T, Matejova L, Ojala S, Keiski R L (2013). Oxidation of dichloromethane over Pt, Pd, Rh, and V2O5 catalysts supported on Al2O3, Al2O3–TiO2 and Al2O3–CeO2. Applied Catalysis B: Environmental, 138–139: 33–42CrossRefGoogle Scholar
  27. Primet M, Pichat P, Mathieu M V (1971). Infrared study of the surface of titanium dioxides. I. Hydroxyl groups. Journal of Physical Chemistry, 75(9): 1216–1220CrossRefGoogle Scholar
  28. Ran L, Qin Z, Wang Z Y, Wang X Y, Dai Q G (2013). Catalytic decomposition of CH2Cl2 over supported Ru catalysts. Catalysis Communications, 37: 5–8CrossRefGoogle Scholar
  29. Shi Z, Yang P, Tao F, Zhou R (2016). New insight into the structure of CeO2–TiO2 mixed oxides and their excellent catalytic performances for 1,2-dichloroethane oxidation. Chemical Engineering Journal, 295: 99–108CrossRefGoogle Scholar
  30. Sinquin G, Petit C, Libs S, Hindermann J P, Kiennemann A (2000). Catalytic destruction of chlorinated C1 volatile organic compounds (CVOCs) reactivity, oxidation and hydrolysis mechanisms. Applied Catalysis B: Environmental, 27(2): 105–115CrossRefGoogle Scholar
  31. Sun P, Wang W, Dai X, Weng X, Wu Z (2016). Mechanism study on catalytic oxidation of chlorobenzene over MnxCe1-xO2/H-ZSM5 catalysts under dry and humid conditions. Applied Catalysis B: Environmental, 198: 389–397CrossRefGoogle Scholar
  32. van den Brink R W, Mulder P, Louw R, Sinquin G, Petit C, Hindermann J P (1998). Catalytic oxidation of dichloromethane on γ-Al2O3: A combined flow and infrared spectroscopic study. Journal of Catalysis, 180(2): 153–160CrossRefGoogle Scholar
  33. Vittadini A, Selloni A, Rotzinger F P, Grätzel M (1998). Structure and energetics of water adsorbed at TiO2 anatase (101) and (001) surfaces. Physical Review Letters, 81(14): 2954–2957CrossRefGoogle Scholar
  34. Wang J, Liu X, Zeng J, Zhu T (2016). Catalytic oxidation of trichloroethylene over TiO2 supported ruthenium catalysts. Catalysis Communications, 76: 13–18CrossRefGoogle Scholar
  35. Wang J, Wang X, Liu X, Zeng J, Guo Y, Zhu T (2015a). Kinetics and mechanism study on catalytic oxidation of chlorobenzene over V2O5/ TiO2 catalysts. Journal of Molecular Catalysis A Chemical, 402: 1–9CrossRefGoogle Scholar
  36. Wang J, Wang X, Liu X, Zhu T, Guo Y, Qi H (2015b). Catalytic oxidation of chlorinated benzenes over V2O5/TiO2 catalysts: The effects of chlorine substituents. Catalysis Today, 241: 92–99CrossRefGoogle Scholar
  37. Wang X Y, Kang Q, Li D (2008). Low-temperature catalytic combustion of chlorobenzene over MnOx-CeO2 mixed oxide catalysts. Catalysis Communications, 9(13): 2158–2162CrossRefGoogle Scholar
  38. Wang Y, Jia A P, Luo M F, Lu J Q (2015c). Highly active spinel type CoCr2O4 catalysts for dichloromethane oxidation. Applied Catalysis B: Environmental, 165: 477–486CrossRefGoogle Scholar
  39. Xia Y, Zhu K, Kaspar T C, Du Y, Birmingham B, Park K T, Zhang Z (2013). Atomic structure of the anatase TiO2(001) surface. Journal of Physical Chemistry Letters, 4(17): 2958–2963CrossRefGoogle Scholar
  40. Yang H G, Sun C H, Qiao S Z, Zou J, Liu G, Smith S C, Cheng H M, Lu G Q (2008). Anatase TiO2 single crystals with a large percentage of reactive facets. Nature, 453(7195): 638–641CrossRefGoogle Scholar
  41. Yang P, Shi Z, Yang S, Zhou R (2015). High catalytic performances of CeO2–CrOx catalysts for chlorinated VOCs elimination. Chemical Engineering Science, 126: 361–369CrossRefGoogle Scholar
  42. Yang P, Yang S, Shi Z, Tao F, Guo X, Zhou R (2016). Accelerating effect of ZrO2 doping on catalytic performance and thermal stability of CeO2–CrOx mixed oxide for 1,2-dichloroethane elimination. Chemical Engineering Journal, 285: 544–553CrossRefGoogle Scholar
  43. Yang P, Zuo S, Zhou R (2017). Synergistic catalytic effect of (Ce,Cr)xO2 and HZSM-5 for elimination of chlorinated organic pollutants. Chemical Engineering Journal, 323: 160–170CrossRefGoogle Scholar
  44. Zhang L L, Liu S Y, Li Z J, Yao J, Wang G Y (2014). Catalytic combustion of dichloromethane over Cr-13X and K-Cr-13X zeolites catalysts. Chemical Journal of Chinese Universities-Chinese, 35(4): 812–817Google Scholar
  45. Zhang X, Pei Z, Ning X, Lu H, Huang H (2015). Catalytic lowtemperature combustion of dichloromethane over V–Ni/TiO2 catalyst. RSC Advances, 5(96): 79192–79199CrossRefGoogle Scholar
  46. Zuo G M, Cheng Z X, Chen H, Li G W, Miao T (2006). Study on photocatalytic degradation of several volatile organic compounds. Journal of Hazardous Materials, 128(2): 158–163CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Yuzhou Deng
    • 1
    • 2
  • Shengpan Peng
    • 1
    • 2
  • Haidi Liu
    • 1
    • 3
  • Shuangde Li
    • 1
    • 3
  • Yunfa Chen
    • 1
    • 3
    Email author
  1. 1.State Key Laboratory of Multiphase Complex SystemsInstitute of Process Engineering, Chinese Academy of SciencesBeijingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.Center for Excellence in Regional Atmospheric EnvironmentInstitute of Urban Environment, Chinese Academy of SciencesXiamenChina

Personalised recommendations