Skip to main content
Log in

Abatement of mixed volatile organic compounds in a catalytic hybrid surface/packed-bed discharge plasma reactor

  • Research Article
  • Published:
Frontiers of Environmental Science & Engineering Aims and scope Submit manuscript

Abstract

In this study, post plasma-catalysis degradation of mixed volatile organic compounds (benzene, toluene, and xylene) has been performed in a hybrid surface/packed-bed discharge plasma reactor with Ag-Ce/g-Al2O3 catalyst at room temperature. The effect of relative air humidity on mixed VOCs degradation has also been investigated in both plasma-only and PPC systems. In comparison to the plasma-only system, a significant improvement can be observed in the degradation performance of mixed VOCs in PPC system with Ag-Ce/γ-Al2O3 catalyst. In PPC system, 68% benzene, 89% toluene, and 94% xylene were degraded at 800 J·L–1, respectively, which were 25%, 11%, and 9% higher than those in plasma-only system. This result can be attributed to the high catalytic activity of Ag-Ce/γ-Al2O3 catalyst to effectively decompose O3 and lead to generating more reactive species which are capable of destructing the VOCs molecules completely. Moreover, the presence of Ag-Ce/γ-Al2O3 catalyst in plasma significantly decreased the emission of discharge byproducts (NOx and O3) and promoted the mineralization of mixed VOCs towards CO2. Adding a small amount of water vapor into PPC system enhanced the degradation efficiencies of mixed VOCs, however, further increasing water vapor had a negative impact on the degradation efficiencies, which was primarily attributed to the quenching of energetic electrons by water vapor in plasma and the competitive adsorption of water vapor on the catalyst surface. Meanwhile, the catalysts before and after discharge were characterized by the Brunauer-Emment-Teller and X-ray photoelectron spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chang M B, Lee C C. Destruction of formaldehyde with dielectric barrier discharge plasmas. Environmental Science & Technology, 1995, 29(1): 181–186

    Article  CAS  Google Scholar 

  2. Chang J S. Recent development of plasma pollution control technology: A critical review. Science and Technology of Advanced Materials, 2001, 2(2): 571–576

    Article  CAS  Google Scholar 

  3. Marotta E, Callea A, Rea M, Paradisi C. DC corona electric discharges for air pollution control. Part 1. Efficiency and products of hydrocarbon processing. Environmental Science & Technology, 2007, 41(16): 5862–5868

    CAS  Google Scholar 

  4. Aerts R, Tu X, Van Gaens W, Whitehead J C, Bogaerts A. Gas purification by nonthermal plasma: A case study of ethylene. Environmental Science & Technology, 2013, 47(12): 6478–6485

    Article  CAS  Google Scholar 

  5. Mizuno A, Kisanuki Y, Noguchi M, Katsura S. Indoor air cleaning using a pulsed discharge plasma. IEEE Transactions on Industry Applications, 1999, 35(6): 1284–1288

    Article  CAS  Google Scholar 

  6. Wang T C, Qu G Z, Yan Q H, Sun Q, Liang D, Hu S. Optimization of gas-liquid hybrid pulsed discharge plasma for p-nitrophenol contaminated dredged sediment remediation. Journal of Electro-statics, 2015, 77: 166–173

    Article  CAS  Google Scholar 

  7. Bo Z, Yan J, Li X, Chi Y, Cen K. Nitrogen dioxide formation in the gliding arc discharge-assisted decomposition of volatile organic compounds. Journal of Hazardous Materials, 2009, 166(2–3): 1210–1216

    Article  CAS  Google Scholar 

  8. Liang W J, Li J, Li J X, Zhu T, Jin Y Q. Formaldehyde removal from gas streams by means of NaNO2 dielectric barrier discharge plasma. Journal of Hazardous Materials, 2010, 175(1–3): 1090–1095

    Article  CAS  Google Scholar 

  9. Yamamoto T, Tamanathan K, Lawless P A. Control of volatile organic compounds by an ac energized ferroelectric pellet reactor and a pulsed corona reactor. IEEE Transactions on Industry Applications, 1992, 28(3): 528–534

    Article  CAS  Google Scholar 

  10. Jiang N, Guo L J, Shang K F, Lu N, Li J, Wu Y. Discharge and optical characterizations of nanosecond pulse sliding dielectric barrier discharge plasma for volatile organic compound degradation. Journal of Physics. D, Applied Physics, 2017, 50(15): 155206

    Article  Google Scholar 

  11. Jiang N, Lu N, Shang K, Li J, Wu Y. Innovative approach for benzene degradation using hybrid surface/packed-bed discharge plasmas. Environmental Science & Technology, 2013, 47(17): 9898–9903

    Article  CAS  Google Scholar 

  12. Tang X J, Feng F D, Ye L L, Zhang X, Huang Y, Liu Z, Yan K. Removal of dilute VOCs in air by post-plasma catalysis over Agbased composite oxide catalysts. Catalysis Today, 2013, 211: 39–43

    Article  CAS  Google Scholar 

  13. Einaga H, Ogata A. Catalytic oxidation of benzene in the gas phase over alumina-supported silver catalysts. Environmental Science & Technology, 2010, 44(7): 2612–2617

    Article  CAS  Google Scholar 

  14. Zhu X B, Gao X, Qin R, Zeng Y, Qu R, Zheng C, Tu X. Plasmacatalytic removal of formaldehyde over Cu-Ce catalysts in a dielectric barrier discharge reactor. Applied Catalysis B: Environmental, 2015, 170-171: 293–300

    Article  CAS  Google Scholar 

  15. Ding H X, Zhu A M, Lu F G, Xu Y, Zhang J, Yang X F. Lowtemperature plasma-catalytic oxidation of formaldehyde in atmospheric pressure gas streams. Journal of Physics. D, Applied Physics, 2006, 39(16): 3603–3608

    Article  CAS  Google Scholar 

  16. Oda T, Takahashi T, Kohzuma S. Decomposition of dilute trichloroethylene by using nonthermal plasma processing-frequency and catalyst effects. IEEE Transactions on Industry Applications, 2001, 37(4): 965–970

    Article  CAS  Google Scholar 

  17. Karuppiah J, Reddy E L, Reddy P M, Ramaraju B, Karvembu R, Subrahmanyam Ch. Abatement of mixture of volatile organic compounds (VOCs) in a catalytic non-thermal plasma reactor. Journal of Hazardous Materials, 2012, 237–238: 283–289

    Article  Google Scholar 

  18. Morent R, Dewulf J, Steenhaut N, Leys C, Van Langenhove H. Hybrid plasma-catalyst system for the removal of trichloroethylene in air. Journal of Advanced Oxidation Technologies, 2006, 9(1): 53–58

    Article  CAS  Google Scholar 

  19. Zhu X B, Liu S Y, Cai Y X, Gao X, Zhou J, Zheng C, Tu X. Postplasma catalytic removal of methanol over Mn-Ce catalysts in an atmospheric dielectric barrier discharge. Applied Catalysis B: Environmental, 2016, 183: 124–132

    Article  CAS  Google Scholar 

  20. Fan X, Zhu T, Sun Y, Yan X. The roles of various plasma species in the plasma and plasma-catalytic removal of low-concentration formaldehyde in air. Journal of Hazardous Materials, 2011, 196 (196): 380–385

    Article  CAS  Google Scholar 

  21. Einaga H, Ibusuki T, Futamura S. Performance evaluation of a hybrid system comprising silent discharge plasma and manganese oxide catalysts for benzene composition. IEEE Transactions on Industry Applications, 2001, 37(5): 1476–1482

    Article  CAS  Google Scholar 

  22. Jiang N, Hu J, Li J, Shang K, Lu N, Wu Y. Plasma-catalytic degradation of benzene over Ag-Ce bimetallic oxide catalysts using hybrid surface/packed-bed discharge plasmas. Applied Catalysis B: Environmental, 2016, 184: 355–363

    Article  CAS  Google Scholar 

  23. Chen H L, Lee H M, Chen S H, Chang M B, Yu S J, Li S N. Removal of volatile organic compounds by single-stage and twostage plasma catalysis systems: A review of the performance enhancement mechanisms, current status, and suitable applications. Environmental Science & Technology, 2009, 43(7): 2216–2227

    Article  CAS  Google Scholar 

  24. Birdsall C M, Jenkins A C, Spadinger E. Iodometric determination of ozone. Analytical Chemistry, 1952, 24(4): 662–664

    Article  CAS  Google Scholar 

  25. Zhang S, Jia L, Wang W C, Yang D Z, Tang K, Liu Z J. The influencing factors of nanosecond pulse homogeneous dielectric barrier discharge in air. Spectrochimica Acta. Part A: Molecular and Biomolecular Spectroscopy, 2014, 117: 535–540

    Article  CAS  Google Scholar 

  26. Mei D H, Zhu X B, He Y L. Plasma-assisted conversion of CO2 in a dielectric barrier discharge reactor: understanding the effect of packing materials. Plasma Sources Science & Technology, 2015, (24): 015011

    Article  CAS  Google Scholar 

  27. Aba’a Ndong A C, Zouzou N, Benard N. Geometrical optimization of a surface DBD powered by a nanosecond pulsed high voltage. Journal of Electrostatics, 2013, 71(3): 246–253

    Article  Google Scholar 

  28. Zhu X B, Gao X, Yu X N. Catalyst screening for acetone removal in a single-stage plasma-catalysis system. Catalysis Today, 2016, (256): 108–114

    Article  Google Scholar 

  29. Durme J V, Dewulf J, Leys C. Combining non-thermal plasma with heterogeneous catalysis in waste gas treatment: A review. Applied Catalysis B: Environmental, 2008, 78(3–4): 324–333

    Article  Google Scholar 

  30. Skoda M, Cabala M, Matolinova I, Skála T, Veltruská K, Matolín V. A photoemission study of the ceria and Au-doped ceria/Cu(111) interfaces. Vacuum, 2009, 84(1): 8–12

    Article  CAS  Google Scholar 

  31. Ogata A, Ito D, Mizuno K, Kushiyama S, Gal A, Yamamoto T. Effect of coexisting components on aromatic decomposition in a packed-bed plasma reactor. Applied Catalysis A, General, 2002, 236 (1–2): 9–15

    Article  CAS  Google Scholar 

  32. Futamura S, Zhang A, Einaga H, Kabashima H. Involvement of catalyst materials in nonthermal plasma chemical processing of hazardous air pollutants. Catalysis Today, 2002, 72(3–4): 259–265

    Article  CAS  Google Scholar 

  33. van Veldhuizen E M. Electrical Discharges for Environmental Purposes: Fundamentals and Applications. New York: Nova Science Publishers, 2000

    Google Scholar 

  34. Durme J V, Dewulf J, Sysmans W, Leys C, Langenhove H V. Efficient toluene abatement in indoor air by a plasma catalytic hybrid system. Applied Catalysis B: Environmental, 2007, 74(1–2): 161–169

    Article  Google Scholar 

  35. Cvetanovic R J. Evaluated chemical kinetic data for the reactions of atomic oxygen O(3P) with understand hydrocarbons. Journal of Physical and Chemical Reference Data, 1987, 16(2): 261–321

    Article  CAS  Google Scholar 

  36. Lias S G. Ionization energy evaluation, In: NIST Standard Reference Database. Maillard W G, Linstrom P J, eds. National Institute of Standard and Technology, Gaithersburg, MD, 2006

    Google Scholar 

Download references

Acknowledgements

The authors thank the National Natural Science Foundation of China (Nos. 51507026 & 51177007), General Financial Grant from the China Postdoctoral Science Foundation (No. 2015M580223), Special Financial Grant from the China Postdoctoral Science Foundation (No. 2016T90221), and Dalian University of Technology Fundamental Research Fund (No. DUT15RC (3)030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, L., Jiang, N., Li, J. et al. Abatement of mixed volatile organic compounds in a catalytic hybrid surface/packed-bed discharge plasma reactor. Front. Environ. Sci. Eng. 12, 15 (2018). https://doi.org/10.1007/s11783-018-1017-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11783-018-1017-z

Keywords

Navigation