Skip to main content
Log in

Simulated solution condition experiment and process design for copper deep removal from nickel anodes based on ion-exchange

离子交换镍阳极深度除铜模拟溶液条件实验及工艺设计

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Removing copper from nickel electrolysis anode solution has been a major keypoint in the nickel metallurgy industry. In this study, we proposed a novel process flow to promote removing copper from nickel electrolysis anode solution. A simulated nickel anode solution was designed, and static and dynamic adsorption experiments were conducted to determine the best of solution pH, adsorption time and temperature, resin dosage and particle size, and stirring speed. The optimal conditions were explored for copper removal from nickel electrolysis anode solution. Based on the optimal experimental conditions and the relevant experimental data, a novel process for copper removal from nickel electrolysis anodes was designed and obtained. This novel process of copper removal from nickel electrolysis anodes was confirmed with nickel anolyte solution with nickel 50–60 g/L and copper 0.5 g/L. After finishing the novel process of copper removal, the nickel in the purified nickel anolyte became undetectable and copper concentration was 3 mg/L, the novel process of resin adsorption to remove copper from nickel anode solution through static and dynamic adsorptions has an efficacious copper removal. It is a beneficial supplement to traditional methods.

摘要

镍电解阳极液去铜是镍冶金工业的重要环节, 目前去效果仍不佳。本研究探讨一种新的工艺流 程提高镍电解阳极液铜去除效果。设计模拟镍阳极液体系, 进行静态和动态吸附实验, 确定镍阳极液 的最佳pH值、吸附时间和温度、树脂用量和粒径以及搅拌速度。明确镍电解阳极溶液去铜最佳工艺 条件。依据最佳实验条件和相关实验数据, 设计并获得了一种新的镍电解阳极除铜工艺流程。并用镍 含量为50~60g/L、铜含量为0.5g/L 的镍阳极液对镍电解阳极除铜的新工艺进行了验证。利用新的镍电 解阳极液和除铜工艺, 可获得纯镍阳极液中镍含量为不可检测、铜含量为3mg/L 的效果。本文设计的 树脂吸附加静态和动态吸附去铜工艺流程, 对去除镍电解阳极液铜具有极佳的效果。该工艺流程是改 良传统镍冶金除铜方法的一种新尝试。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference

  1. ILYAS N, ILYAS S, SAJJAD-UR-RAHMAN S U, et al. Removal of copper from an electroplating industrial effluent using the native and modified spirogyra [J]. Water Science and Technology: a Journal of the International Association on Water Pollution Research, 2018, 78(1–2): 147–155. DOI: https://doi.org/10.2166/wst.2018.226.

    Article  Google Scholar 

  2. LI Jiang-tao, CHEN Ai-liang. Deep removal of copper from nickel electrolyte using manganese sulfide [J]. Transactions of Nonferrous Metals Society of China, 2015, 25(11): 3802–3807. DOI: https://doi.org/10.1016/s1003-6326(15)64024-9.

    Article  Google Scholar 

  3. LIU Xu-heng, HE Yang, ZHAO Zhong-wei, et al. Study on removal of copper from nickel-copper mixed solution by membrane electrolysis [J]. Hydrometallurgy, 2018, 180: 153–157. DOI: https://doi.org/10.1016/j.hydromet.2018.07.019.

    Article  Google Scholar 

  4. SO W W, CHOE S, CHUANG R, et al. An effective diffusion barrier metallization process on copper [J]. Thin Solid Films, 2000, 376(1–2): 164–169. DOI: https://doi.org/10.1016/s0040-6090(00)01212-8.

    Article  Google Scholar 

  5. KUDELSKI A, JANIK-CZACHOR M, BUKOWSKA J, et al. Surface-enhanced Raman scattering (SERS) on copper electrodeposited under nonequilibrium conditions [J]. Journal of Molecular Structure, 1999, 482–483: 245–248. DOI: https://doi.org/10.1016/s0022-2860(98)00664-4.

    Article  Google Scholar 

  6. YANG Zhi-hui, LI Bo, ZENG Wei-zhi, et al. Design and analysis of continuous-flow reactors for copper sulfide precipitation process by a computational method [J]. Environmental Science and Pollution Research, 2019, 26(33): 34531–34551. DOI: https://doi.org/10.1007/s11356-019-06512-0.

    Article  Google Scholar 

  7. YE Mao-you, LI Guo-jian, YAN Ping-fang, et al. Removal of metals from lead-zinc mine tailings using bioleaching and followed by sulfide precipitation [J]. Chemosphere, 2017, 185: 1189–1196. DOI: https://doi.org/10.1016/j.chemosphere.2017.07.124.

    Article  Google Scholar 

  8. RYU H S, HA C W, JI S Y, et al. Electrochemical properties of the NiS powder prepared by co-precipitation method for lithium secondary battery [J]. Journal of Nanoscience and Nanotechnology, 2014, 14(10): 7943–7947. DOI: https://doi.org/10.1166/jnn.2014.9458.

    Article  Google Scholar 

  9. ILYAS S, SRIVASTAVA R R, JIN S, et al. Liquid-liquid separation of copper and nickel ammine complexes using phenolic oxime mixture with tributyl phosphate [J]. Geosystem Engineering, 2023, 26(2): 58–66. DOI: https://doi.org/10.1080/12269328.2023.2187887.

    Article  Google Scholar 

  10. SUWANNAHONG K, SIRILAMDUAN C, DEEPATANA A, et al. Characterization and optimization of polymeric bispicolamine chelating resin: Performance evaluation via RSM using copper in acid liquors as a model substrate through ion exchange method [J]. Molecules, 2022, 27(21): 7210. DOI: https://doi.org/10.3390/molecules27217210.

    Article  Google Scholar 

  11. CEN Xiao-tong, LI Jiu-ling, JIANG Guang-ming, et al. A critical review of chemical uses in urban sewer systems [J]. Water Research, 2023, 240: 120108. DOI: https://doi.org/10.1016/j.watres.2023.120108.

    Article  Google Scholar 

  12. DABROWSKI A, HUBICKI Z, PODKOŚCIELNY P, et al. Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method [J]. Chemosphere, 2004, 56(2): 91–106. DOI: https://doi.org/10.1016/j.chemosphere.2004.03.006.

    Article  Google Scholar 

  13. WU Jia-wen, WANG Tao, WANG Jia-wei, et al. A novel modified method for the efficient removal of Pb and Cd from wastewater by biochar: Enhanced the ion exchange and precipitation capacity [J]. The Science of the Total Environment, 2021, 754: 142150. DOI: https://doi.org/10.1016/j.scitotenv.2020.142150.

    Article  Google Scholar 

  14. HE San, ZHANG Xiao-zhuo, XIA Xing-yu, et al. Low energy consumption electrically regenerated ion-exchange for water desalination [J]. Water Science and Technology: A Journal of the International Association on Water Pollution Research, 2020, 82(8): 1710–1719. DOI: https://doi.org/10.2166/wst.2020.442.

    Article  Google Scholar 

  15. POPOV L. Determination of uranium isotopes in environmental samples by anion exchange in sulfuric and hydrochloric acid media [J]. Applied Radiation and Isotopes: Including Data, Instrumentation and Methods for Use in Agriculture, Industry and Medicine, 2016, 115: 274–279. DOI: https://doi.org/10.1016/j.apradiso.2016.07.013.

    Article  Google Scholar 

  16. KARNISKI L P, ARONSON P S. Anion exchange pathways for Cl- transport in rabbit renal microvillus membranes [J]. American Journal of Physiology-Renal Physiology, 1987, 253(3): F513–F521. DOI: https://doi.org/10.1152/ajprenal.1987.253.3.f513.

    Article  Google Scholar 

  17. BADAWY N A, EL-BAYAA A A, ABDEL-AAL A Y, et al. Chromatographic separations and recovery of lead ions from a synthetic binary mixtures of some heavy metal using cation exchange resin [J]. Journal of Hazardous Materials, 2009, 166(2–3): 1266–1271. DOI: https://doi.org/10.1016/j.jhazmat.2008.12.044.

    Article  Google Scholar 

  18. YAHAYA PUDZA M, ZAINAL ABIDIN Z, ABDUL RASHID S, et al. Eco-friendly sustainable fluorescent carbon dots for the adsorption of heavy metal ions in aqueous environment [J]. Nanomaterials, 2020, 10(2): 315. DOI: https://doi.org/10.3390/nano10020315.

    Article  Google Scholar 

  19. LEVIN Y, DOS SANTOS A P. Ions at hydrophobic interfaces [J]. Journal of Physics Condensed Matter: an Institute of Physics Journal, 2014, 26(20): 203101. DOI: https://doi.org/10.1088/0953-8984/26/20/203101.

    Article  Google Scholar 

  20. FU Feng-lian, WANG Qi. Removal of heavy metal ions from wastewaters: A review [J]. Journal of Environmental Management, 2011, 92(3): 407–418. DOI: https://doi.org/10.1016/j.jenvman.2010.11.011.

    Article  Google Scholar 

  21. DUAN Guang-yu, LI Xin-tong, MA Xin, et al. High-efficiency adsorption removal for Cu(II) and Ni(II) using a novel acylamino dihydroxamic acid chelating resin [J]. The Science of the Total Environment, 2023, 864: 160984. DOI: https://doi.org/10.1016/j.scitotenv.2022.160984.

    Article  Google Scholar 

  22. RICH D H, GURWARA S K. Preparation of a new o-nitrobenzyl resin for solid-phase synthesis of tert-butyloxycarbonyl-protected peptide acids [J]. Journal of the American Chemical Society, 1975, 97(6): 1575–1579. DOI: https://doi.org/10.1021/ja00839a052.

    Article  Google Scholar 

  23. MA Xiao-ling, WANG Wen-long, SUN Cheng-gong, et al. Adsorption performance and kinetic study of hierarchical porous Fe-based MOFs for toluene removal [J]. The Science of the Total Environment, 2021, 793: 148622. DOI: https://doi.org/10.1016/j.scitotenv.2021.148622.

    Article  Google Scholar 

  24. ZHANG Wei-wei, QU Zhen-ping, LI Xin-yong, et al. Comparison of dynamic adsorption/desorption characteristics of toluene on different porous materials [J]. Journal of Environmental Sciences, 2012, 24(3): 520–528. DOI: https://doi.org/10.1016/s1001-0742(11)60751-1.

    Article  Google Scholar 

  25. MATA M R, ORTIZ B, LUHAR D, et al. How dynamic adsorption controls surfactant-enhanced boiling [J]. Scientific Reports, 2022, 12(1): 18170. DOI: https://doi.org/10.1038/s41598-022-21313-1.

    Article  Google Scholar 

  26. PATHIRANA C, ZIYATH A M, JINADASA K B S N, et al. Mathematical modelling of the influence of physico-chemical properties on heavy metal adsorption by biosorbents [J]. Chemosphere, 2020, 255: 126965. DOI: https://doi.org/10.1016/j.chemosphere.2020.126965.

    Article  Google Scholar 

  27. MAMA C N, NWONU D C, AKANNO C C, et al. Adsorption capacity of composite bio-modified geopolymer for multi-component heavy metal system: Optimisation, equilibrium and kinetics study [J]. Environmental Monitoring and Assessment, 2022, 194(2): 134. DOI: https://doi.org/10.1007/s10661-021-09733-4.

    Article  Google Scholar 

  28. FRANZBLAU A, ROSENSTOCK L, EATON D L. Use of inductively coupled plasma-atomic emission spectroscopy (ICP-AES) in screening for trace metal exposures in an industrial population [J]. Environmental Research, 1988, 46(1): 15–24. DOI: https://doi.org/10.1016/s0013-9351(88)80055-0.

    Article  Google Scholar 

  29. FARAH K S, SNEDDON J. Optimization of a simultaneous multi-element atomic absorption spectrometer [J]. Talanta, 1993, 40(6): 879–882. DOI: https://doi.org/10.1016/0039-9140(93)80045-s.

    Article  Google Scholar 

  30. LI Peng-gang, WANG Jing-xuan, LI Xi-tong, et al. Facile synthesis of amino-functional large-size mesoporous silica sphere and its application for Pb2+ removal [J]. Journal of Hazardous Materials, 2019, 378: 120664. DOI: https://doi.org/10.1016/j.jhazmat.2019.05.057.

    Article  Google Scholar 

  31. ADU-BOAHENE F, BOAKYE P, AGYEMANG F O, et al. Understanding fluoride adsorption from groundwater by alumina modified with alum using PHREEQC surface complexation model [J]. Scientific Reports, 2023, 13(1): 12307. DOI: https://doi.org/10.1038/s41598-023-38564-1.

    Article  Google Scholar 

  32. CHEN Zhi-qiang, TANG Ying-cai, WEN Qin-xue, et al. Effect of pH on effluent organic matter removal in hybrid process of magnetic ion-exchange resin adsorption and ozonation [J]. Chemosphere, 2020, 241: 125090. DOI: https://doi.org/10.1016/j.chemosphere.2019.125090.

    Article  Google Scholar 

  33. CHEN Quan-zhou, ZHOU Kang-gen, HU Yuan-juan, et al. Effect of competing ions and causticization on the ammonia adsorption by a novel poly ligand exchanger (PLE) ammonia adsorption reagent [J]. Water Science and Technology: a Journal of the International Association on Water Pollution Research, 2017, 75(5–6): 1294–1308. DOI: https://doi.org/10.2166/wst.2016.548.

    Article  Google Scholar 

  34. YEBRA-BIURRUN M C, CARRO-MARIÑO N. Flow injection flame atomic absorption determination of Cu, Mn and Zn partitioning in seawater by on-line room temperature sonolysis and minicolumn chelating resin methodology [J]. Talanta, 2010, 83(2): 425–430. DOI: https://doi.org/10.1016/j.talanta.2010.09.045.

    Article  Google Scholar 

  35. LIPATOV Y, TODOSIJCHUK T, CHORNAYA V. Temperature dependence of adsorption of polymer mixtures from solutions [J]. Journal of Colloid and Interface Science, 2000, 232(2): 364–369. DOI: https://doi.org/10.1006/jcis.2000.7173.

    Article  Google Scholar 

  36. DE LUCA P, NAGY J B. Treatment of water contaminated with reactive black-5 dye by carbon nanotubes [J]. Materials, 2020, 13(23): 5508. DOI: https://doi.org/10.3390/ma13235508.

    Article  Google Scholar 

  37. LIANG Chang-li, SHEN Ji-li. Removal of yttrium from rare-earth wastewater by Serratia marcescens: Biosorption optimization and mechanisms studies [J]. Scientific Reports, 2022, 12(1): 4861. DOI: https://doi.org/10.1038/s41598-022-08542-0.

    Article  Google Scholar 

  38. ZHANG Man-cheng, WANG Wei, LV Zong-xiang, et al. Effects of particle size on the adsorption behavior and antifouling performance of magnetic resins [J]. Environmental Science and Pollution Research International, 2023, 30(5): 11926–11935. DOI: https://doi.org/10.1007/s11356-022-22961-6.

    Article  Google Scholar 

  39. MITSUHASHI A, HANAOKA K, TERANAKA T. Fracture toughness of resin-modified glass ionomer restorative materials: Effect of powder/liquid ratio and powder particle size reduction on fracture toughness [J]. Dental Materials: Official Publication of the Academy of Dental Materials, 2003, 19(8): 747–757. DOI: https://doi.org/10.1016/s0109-5641(03)00022-8.

    Article  Google Scholar 

  40. LA H, HETTIARATCHI J P A, ACHARI G. The influence of biochar and compost mixtures, water content, and gas flow rate, on the continuous adsorption of methane in a fixed bed column [J]. Journal of Environmental Management, 2019, 233: 175–183. DOI: https://doi.org/10.1016/j.jenvman.2018.12.015.

    Article  Google Scholar 

  41. DENG Pei-yuan, WANG Guang-zhou, LI Chang-kan, et al. Removal of estrogen pollutants using biochar-pellet-supported nanoscale zero-valent iron [J]. Water Science and Technology: a Journal of the International Association on Water Pollution Research, 2022, 85(11): 3259–3270. DOI: https://doi.org/10.2166/wst.2022.171.

    Article  Google Scholar 

  42. FEIZI F, SARMAH A K, RANGSIVEK R, et al. Adsorptive removal of propranolol under fixed-bed column using magnetic tyre char: Effects of wastewater effluent organic matter and ball milling [J]. Environmental Pollution, 2022, 305: 119283. DOI: https://doi.org/10.1016/j.envpol.2022.119283.

    Article  Google Scholar 

  43. KHURSHID H, MUSTAFA M R U, ISA M H. Adsorption of chromium, copper, lead and mercury ions from aqueous solution using bio and nano adsorbents: A review of recent trends in the application of AC, BC, nZVI and MXene [J]. Environmental Research, 2022, 212: 113138. DOI: https://doi.org/10.1016/j.envres.2022.113138.

    Article  Google Scholar 

  44. BOLLAG D M. Ion-exchange chromatography [M]//Methods in Molecular Biology. Totowa, NJ: Humana Press, 1994: 11–22. DOI: https://doi.org/10.1385/0-89603-274-4:11.

    Google Scholar 

  45. MISHRA S, DASH D, AL-TAWAHA A R M S, et al. A review on heavy metal ion adsorption on synthetic microfiber surface in aquatic environments [J]. Applied Biochemistry and Biotechnology, 2022, 194(10): 4639–4654. DOI: https://doi.org/10.1007/s12010-022-04029-w.

    Article  Google Scholar 

Download references

Acknowledgement

We appreciate the contribution of the various members in the School of Metallurgy and Environment, Central South University.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. The material preparation, data collection, and analysis were performed by TANG Xiao-wei. ZHAO Zhong-wei supervised the project. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Zhong-wei Zhao  (赵中伟).

Ethics declarations

The authors declare no conflict.

Additional information

Foundation item: Project(2019yff0216502) supported by the National Key Research & Development Plan of Ministry of Science and Technology of China; Project(2021SK1020-4) supported by Major Science and Technological Innovation Project of Hunan Province, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Xw., Zhao, Zw. Simulated solution condition experiment and process design for copper deep removal from nickel anodes based on ion-exchange. J. Cent. South Univ. (2024). https://doi.org/10.1007/s11771-024-5655-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11771-024-5655-y

Key words

关键词

Navigation