Skip to main content
Log in

Effect of Sm content on microstructure and properties of extruded Mg-6Al-2Sr alloy

Sm含量对挤压态Mg−6Al−2Sr 合金组织及性能的影响

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

In this paper, the strengthening mechanism of different Sm content on extruded Mg-6Al-2Sr alloy was studied. The microstructure was observed by metallographic experiment, X-ray diffraction, scanning electron microscopy and transmission electron microscopy, and the effect of Sm content on the microstructure of the alloy was analyzed by EBSD. The main experiment in this paper is the extrusion experiment of Mg-6Al-2Sr cast alloy with different Sm content. The results show that with the increase of Sm content, the generated Al2Sm phase is broken under the action of extrusion, and uniformly dispersed at the grain boundary along the extrusion direction, which hinders the grain growth. However, with the increase of Sm content, the Al2Sm phase increases and aggregates at the grain boundary, which has an adverse effect on the mechanical properties of the alloy. When the Sm content is 1.5 wt%, the average grain size of the alloy is the finest, and its tensile strength, yield strength and elongation reach 297.9 MPa, 257.8 MPa and 21.3%, respectively. The hardness reaches HV78.9, which is 15.6% higher than that of the alloy with 0 wt% Sm content. The yield strength increased by 34.6% and the elongation increased by 34.8%.

摘要

本文研究了不同Sm含量对挤压态Mg−6Al−2Sr合金的强化机理,采用金相实验、X射线衍射、扫描电镜和透射电镜对显微组织进行观察,并通过EBSD分析了Sm含量对合金显微组织的影响。本文主要是对不同Sm含量的Mg−6Al−2Sr 铸态合金进行挤压实验。结果表明:随着Sm含量的增加,生成的Al2Sm 相在挤压的作用下破碎,并且沿挤压方向在晶界处均匀弥散,阻碍晶粒长大;继续不断增加Sm,使得在晶界处Al2Sm相增多聚集,反而对合金力学性能产生不利影响;当Sm含量为1.5 wt%时,合金的平均晶粒尺寸最细小,其抗拉强度、屈服强度和伸长率达到297.9 MPa、257.8 MPa 和21.3%,硬度达到HV78.9,较Sm含量为0 wt%的合金,抗拉强度提升了15.6%,屈服强度提升了34.6%,伸长率提升了34.8%。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. YANG Guo-qing, PENG Xiao-dong, YANG Yan, et al. Microstructure and mechanical properties of as-cast and extruded Mg−8Li−3Al−0.7Si alloy [J]. Journal of Central South University, 2018, 25(4): 764–771. DOI: https://doi.org/10.1007/s11771-018-3781-0.

    Article  MathSciNet  CAS  Google Scholar 

  2. CHEN Xiao-ya, LI Quan-an, ZHU Li-min, et al. Effect of Sm on microstructure, mechanical property and lattice constant of as-cast Mg−11Gd−2Y−0.6Al alloy [J]. Transactions of the Indian Institute of Metals, 2019, 72(7): 1783–1789. DOI: https://doi.org/10.1007/s12666-019-01650-y.

    Article  CAS  Google Scholar 

  3. YAO Yan-tao, CHEN Li-qing, WANG Weng-bo. Influence of B4C particle size on microstructure and damping capacities of (B4C+Ti)/Mg composites [J]. Journal of Central South University, 2021, 28: 648–656. DOI: https://doi.org/10.1007/s11771-021-4634-9.

    Article  CAS  Google Scholar 

  4. LIU Wen-hong, BAO Jia-xin, QIAO Ming-liang, et al. Microstructures and mechanical properties of Mg−6Zn−1Y−0.85Zr alloy prepared at different extrusion temperatures and speeds [J]. Journal of Materials Research and Technology, 2022, 21: 1042–1052. DOI: https://doi.org/10.1016/j.jmrt.2022.09.096.

    Article  CAS  Google Scholar 

  5. XING Shi-wen, LI Cai-xia, LI Chao, et al. Effect of Sm content on microstructure evolution and mechanical properties of as-cast Mg − 6Al − 2Sr alloys [J]. Journal of Central South University, 2022, 29(12): 3811–3824. DOI: https://doi.org/10.1007/s11771-022-5192-5.

    Article  CAS  Google Scholar 

  6. MA Tao, ZHAO Si-cong, WANG Li-ping, et al. Influence of solution treatment time on precipitation behavior and mechanical properties of Mg−2.0Nd−2.0Sm−0.4Zn−0.4Zr alloy [J]. Materials, 2021, 14(17): 5037. DOI: https://doi.org/10.3390/ma14175037.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. LIU Jia-an, YANG Chun-xue, YANG Meng-li. The microstructure and mechanical properties of die-cast Mg−6Al−2Sm−xCu alloys [J]. Metals, 2017, 7(5): 164. DOI: https://doi.org/10.3390/met7050164.

    Article  CAS  Google Scholar 

  8. GUAN Kai, EGUSA D, ABE E, et al. Microstructures and mechanical properties of as-cast Mg−Sm−Zn−Zr alloys with varying Gd contents [J]. Journal of Magnesium and Alloys, 2022, 10(5): 1220–1234. DOI: https://doi.org/10.1016/j.jma.2021.09.013.

    Article  CAS  Google Scholar 

  9. LIU Zhan-he, WANG Lei, WANG Li-ping, et al. Effect of Al addition on the grain refinement and mechanical properties of as-cast Mg−5Y−4Sm alloys [J]. Journal of Materials Science, 2022, 57(31): 15137–15150. DOI: https://doi.org/10.1007/s10853-022-07569-y.

    Article  ADS  CAS  Google Scholar 

  10. CHEN Yan-hong, WANG Li-ping, FENG Yi-cheng, et al. Effect of Ca and Sm combined addition on the microstructure and elevated-temperature mechanical properties of Mg−6Al alloys [J]. Journal of Materials Engineering and Performance, 2019, 28(5): 2892–2902. DOI: https://doi.org/10.1007/s11665-019-04044-9.

    Article  ADS  CAS  Google Scholar 

  11. GUI Yun-wei, LI Quan-an, CHEN Jun. Effects of Sm content on microstructures and mechanical properties of casting Mg−Y−Nd−Sm−Zr alloys [J]. Materials Research Express, 2018, 5(7): 076515. DOI: https://doi.org/10.1088/2053-1591/aad07e.

    Article  ADS  Google Scholar 

  12. QIN Jun-long, CHANG Li-li, SU Xiao-jing. Influence of Sr on microstructure evolution, mechanical and corrosion properties of extruded Mg−2Zn−0.5Ca alloy [J]. Journal of Magnesium and Alloys, 2023 DOI: https://doi.org/10.1016/j.jma.2023.03.008.

  13. QIN Peng-fei, YANG Qiang, HE Yu-ying, et al. Microstructure and mechanical properties of high-strength high-pressure die-cast Mg−4Al−3La−1Ca−0.3Mn alloy [J]. Rare Metals, 2021, 40(10): 2956–2963. DOI: https://doi.org/10.1007/s12598-020-01661-5.

    Article  CAS  Google Scholar 

  14. SINGH L K, JOSEPH P, SRINIVASAN A, et al. Microstructure and mechanical properties of gadolinium- and misch metal-added Mg−Al alloy [J]. Rare Metals, 2022, 41(9): 3205–3213. DOI: https://doi.org/10.1007/s12598-017-0928-3.

    Article  Google Scholar 

  15. WANG Feng, SUN Shi-jie, WANG Zhi, et al. Microstructure, mechanical properties and first-principle analysis of vacuum die-cast Mg−7Al alloy with Sn addition [J]. Rare Metals, 2022, 41(6): 1961–1967. DOI: https://doi.org/10.1007/s12598-015-0585-3.

    Article  CAS  Google Scholar 

  16. ZHAO Tian-shuo, HU Yao-bo, PAN Fu-sheng, et al. Effect of Zn content on the microstructure and mechanical properties of Mg−Al−Sn−Mn alloys [J]. Materials, 2019, 12(19): 3102. DOI: https://doi.org/10.3390/ma12193102.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. LIU Y F, JIA X J, QIAO X G, et al. Effect of La content on microstructure, thermal conductivity and mechanical properties of Mg−4Al magnesium alloys [J]. Journal of Alloys and Compounds, 2019, 806: 71–78. DOI: https://doi.org/10.1016/j.jallcom.2019.07.267.

    Article  CAS  Google Scholar 

  18. ZHANG Xue-jian, WANG Hong-wei, YE Feng-bai, et al. Cooperative effect of Mg and Si contents on the microstructural evolution, mechanical performance, and deformation behavior of cast Al−Li−Mg−Si alloys [J]. Materials Science and Engineering A, 2022, 841: 142976. DOI: https://doi.org/10.1016/j.msea.2022.142976.

    Article  CAS  Google Scholar 

  19. EMAMI S M, DIVANDARI M, HAJJARI E, et al. Comparison between conventional and lost foam compound casting of Al/Mg light metals [J]. International Journal of Cast Metals Research, 2013, 26(1): 43–50. DOI: https://doi.org/10.1179/1743133612Y.0000000037.

    Article  CAS  Google Scholar 

  20. WANG Cong, CUI Jie, LUO Tian-jiao, et al. Effect of Al on the microstructure and mechanical properties of Mg−6Zn−2Sn−0.5Mn alloy [J]. Materials Science and Technology, 2019, 35(12): 1464–1470. DOI: https://doi.org/10.1080/02670836.2019.1629542.

    Article  ADS  CAS  Google Scholar 

  21. FU Yuan-ke, WANG Li-ping, ZHAO Si-cong, et al. Effect of Al content on microstructure evolution and mechanical properties of As-cast Mg−11Gd−2Y−1Zn alloy [J]. Materials, 2021, 14(23): 7145. DOI: https://doi.org/10.3390/ma14237145.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. NAYERI T, YARI M, SADREDDINI S. Effect of Sr on the microstructure and properties of Mg-6Al alloy [J]. Protection of Metals and Physical Chemistry of Surfaces, 2016, 52(2): 273–278. DOI: https://doi.org/10.1134/s2070205116020209.

    Article  CAS  Google Scholar 

  23. SARTIKA V D, TRINANDA A F, SYARIF R A, et al. The role of heat treatment on characteristics of Mg−Al−Sr reinforced nano-SiC composite [J]. IOP Conference Series: Materials Science and Engineering, 2019, 553. DOI: https://doi.org/10.1088/1757-899x/553/1/012027.

  24. SONG Jun, GAO Yong-hao, LIU Chu-ming, et al. The effect of Sr addition on the microstructure and corrosion behaviour of a Mg−Zn−Ca alloy [J]. Surface and Coatings Technology, 2022, 437: 128328. DOI: https://doi.org/10.1016/j.surfcoat.2022.128328.

    Article  CAS  Google Scholar 

  25. DARGUSCH M S, SHI Zhi-ming, ZHU Han-liang, et al. Microstructure modification and corrosion resistance enhancement of die-cast Mg−Al−Re alloy by Sr alloying [J]. Journal of Magnesium and Alloys, 2021, 9(3): 950–963. DOI: https://doi.org/10.1016/j.jma.2020.09.008.

    Article  CAS  Google Scholar 

  26. L’ESPÉRANCE G, PLAMONDON P, KUNST M, et al. Characterization of intermetallics in Mg−Al−Sr AJ62 alloys [J]. Intermetallics, 2010, 18(1): 1–7. DOI: https://doi.org/10.1016/j.intermet.2009.05.017.

    Article  Google Scholar 

  27. AFSHARNADERI A, LOTFPOUR M, MIRZADEH H, et al. Enhanced mechanical properties of as-cast AZ91 magnesium alloy by combined RE−Sr addition and hot extrusion [J]. Materials Science and Engineering A, 2020, 792: 139817. DOI: https://doi.org/10.1016/j.msea.2020.139817.

    Article  CAS  Google Scholar 

  28. ZHU Xiao-chun. Effect of alloying element Sb on microstructure and properties of Mg−5Al−2Sr alloy [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012. https://kns.cnki.net/kcms2/article/abstract?v=TmrGBFWiZl0s8afTMyI_Iaei5Il7NAxzesWG-dB7tNU5QE_FrhTgq180YMe4wC5CUS0VucTqywHoiIGI4pssBQ7Sx9IC87A—AwmnHlH9Q7BFhI6EEq4b_GHs4vK5_97n7_NBHeYI93FCTikhZa01Q==&uniplatform=NZKPT&language=CHS. (in Chinese)

    Google Scholar 

  29. KONG Ling-hang. Two main and a new type rare earth elements in Mg alloys: A review [J]. IOP Conference Series: Materials Science and Engineering, 2017, 242: 012026. DOI: https://doi.org/10.1088/1757-899x/242/1/012026.

    Article  Google Scholar 

  30. HU Yong, YU Nan, ZHAO Long-zhi, et al. Effect of Sm on the microstructure and properties of Mg−9Al alloy [J]. International Journal of Cast Metals Research, 2017, 30(6): 317–321. DOI: https://doi.org/10.1080/13640461.2017.1292891.

    Article  CAS  Google Scholar 

  31. FENG Jing-kai. Study on the deformation law and microstructure evolution mechanism of semi-solid/rapid extrusion shear process of magnesium alloy [D]. Chongqing: Chongqing University, 2021. DOI: https://doi.org/10.27670/d.cnki.gcqdu.2021.001101. (in Chinese)

    Google Scholar 

  32. ZHANG Shi-hong, SONG Guang-sheng, XU Yong, et al. Application of schmid factor in Mg alloy deformation micromechanism investigation [J]. Journal of Netshape Forming Engineering, 2014, 6(6): 1–6, 39, 161. (in Chinese)

    Google Scholar 

  33. GUERZA-SOUALAH F, AZZEDDINE H, BAUDIN T, et al. Microstructural and textural investigation of an Mg−Dy alloy after hot plane strain compression [J]. Journal of Magnesium and Alloys, 2020, 8(4): 1198–1207. DOI: https://doi.org/10.1016/j.jma.2020.05.004.

    Article  CAS  Google Scholar 

  34. MA Chun-hua, PAN Fu-sheng, LU Zhi-wen. Uniaxial compressive properties and fracture analysis of Mg−9Al−5Sn−xSb extruded magnesium alloy [J]. Journal of Materials Heat Treatment, 2020, 41(9): 126–131. DOI:https://doi.org/10.13289/j.issn.1009-6264.2020-0621.

    Google Scholar 

  35. CALDATTO DALAN F, de LIMA ANDREANI G F, et al. Effect of ECAP processing on distribution of second phase particles, hardness and electrical conductivity of Cu−0.81Cr−0.07Zr alloy [J]. Transactions of Nonferrous Metals Society of China, 2022, 32(1): 217–232. DOI: https://doi.org/10.1016/s1003-6326(21)65789-8.

    Article  CAS  Google Scholar 

  36. YU He-shuai. Study on microstructure and properties of modified and deformed Mg−5Sn−1Si alloy [D]. Zhengzhou: Henan Polytechnic University, 2021. DOI: https://doi.org/10.27116/d.cnki.gjzgc.2021.000069. (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

LIU Hong-xu developed the overall experimental method, verified the proposed method through practical experiments, and finally edited the manuscript. LI Cai-xia contributed to the idea of the study, analyzed the data, and finally revised and edited the manuscript. XIE Jin-long managed and analyzed the data. LI Chao made a significant contribution to the compilation of manuscripts. ZHANG Xiao-hua made a significant contribution to the compilation of manuscripts.

Corresponding author

Correspondence to Cai-xia Li  (李彩霞).

Ethics declarations

LIU Hong-xu, LI Cai-xia, XIE Jin-long, LI Chao and ZHANG Xiao-hua declare that they have no conflict of interest.

Additional information

Foundation item: Project(51975167) supported by the National Natural Science Foundation, China; Project(2022ZX01A01) supported by the Key R&D Program in Heilongjiang Province, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Hx., Li, Cx., Xie, Jl. et al. Effect of Sm content on microstructure and properties of extruded Mg-6Al-2Sr alloy. J. Cent. South Univ. 31, 59–71 (2024). https://doi.org/10.1007/s11771-023-5475-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-023-5475-5

Key words

关键词

Navigation