Skip to main content
Log in

Study of slope vibration site effects and energy analysis from CO2 static blasting

二氧化碳静态爆破的边坡振动场地效应和能量分析

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The novel CO2 static blasting method offered good prospects for application as it was more effective than mechanical rock breaking, less vibratory, less dusty and quieter than the traditional drill and blast method. We carried out both true triaxial CO2 static blasting fracturing experiments and rock-breaking site vibration monitoring experiments to extract vibration signal characteristics, focusing on slope safety. The results show that: 1) the peak vibration velocity of CO2 static blasting decayed rapidly and dropped below 30 mm/s at 6 m; 2) the principal frequency of the vibration waveform spectrum caused by CO2 static blasting was higher than that of the drill-and-blast method; 3) the vibration velocity prediction formula used in the drill-and-blast method was applicable to CO2 static blasting, and the prediction formula with elevation was more accurate. An HIG fracturing model for CO2 static blasting is proposed, which provides a basic framework for research of new rock-breaking techniques. The vibration displacement of the slope under CO2 static blasting is minimal, and more attention should be paid to the exothermic and temperature measurement of the polyenergy agent in the future.

摘要

进行真三轴CO2 静态爆破压裂实验和现场测试, 获得压力曲线、试样裂隙分布、现场振动曲线 和岩体破坏特征, 获得压力曲线、试样裂隙分布、现场振动曲线 和岩体破坏特征, 同时还利用窗函数傅里叶变 换提取振动特征, 以评估破岩现场边坡的结构安全。研究结果表明:(1)CO2 静态爆破的峰值振动速度 在8 m 处衰减至满足建筑物保护要求, 比传统的钻爆法更安全: 比传统的钻爆法更安全, 且随着距离的加长, 振动能量的分布逐渐分散; (3)钻爆法的振动速度预测公式适用 于CO2 静态爆破的, 且带高程的预测公式更为准确。根据压力曲线、试样裂隙分布和现场岩体损伤, 提出CO2 静态爆破的HIG 破岩模型, 为新技术的研究提供了基础框架。在实验中没有采集到温度数 据, 为新技术的研究提供了基础框架。在实验中没有采集到温度数 据

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. CHERDANTSEV N V, PRESLER V T, IZAKSON V Y. Effect of bearing pressure on the strength of a rock mass containing cylindrical cuts [J]. Journal of Applied Mechanics and Technical Physics, 2009, 50(6): 1084–1088. DOI: https://doi.org/10.1007/s10808-009-0145-4.

    Article  ADS  Google Scholar 

  2. ZOU Jia-xing, ZHANG Rui, ZHOU Feng-yuan, et al. Hazardous area reconstruction and law analysis of coal spontaneous combustion and gas coupling disasters in goaf based on DEM-CFD [J]. ACS Omega, 2023, 8(2): 2685–2697. DOI: https://doi.org/10.1021/acsomega.2c07236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. SCARPATO D J. Constructibility challenges for perimeter control blasting and slope development in shale and other “weak” rocks [J]. Rock Mechanics and Rock Engineering, 2016, 49(2): 653–659. DOI: https://doi.org/10.1007/s00603-015-0864-1.

    Article  ADS  Google Scholar 

  4. TIAN Xiao-xu, SONG Zhan-ping, WANG Jun-bao. Study on the propagation law of tunnel blasting vibration in stratum and blasting vibration reduction technology [J]. Soil Dynamics and Earthquake Engineering, 2019, 126: 105813. DOI: https://doi.org/10.1016/j.soildyn.2019.105813.

    Article  Google Scholar 

  5. ZHANG Xiao-qiang, ZHOU Feng-yuan, ZOU Jia-xing. Numerical simulation of gas extraction in coal seam strengthened by static blasting [J]. Sustainability, 2022, 14(19): 12484. DOI: https://doi.org/10.3390/su141912484.

    Article  CAS  Google Scholar 

  6. XIA Yu-qing, JIANG Nan, ZHOU Chuan-bo, et al. Dynamic behaviors of buried reinforced concrete pipelines with gasketed bell-and-spigot joints subjected to tunnel blasting vibration [J]. Tunnelling and Underground Space Technology, 2021, 118: 104172. DOI: https://doi.org/10.1016/j.tust.2021.104172.

    Article  Google Scholar 

  7. LI Zi-yuan. Study on vibration effect of pre-splitting crack in tunnel excavation under thermal explosion loading [J]. Case Studies in Thermal Engineering, 2021, 28: 101401. DOI: https://doi.org/10.1016/j.csite.2021.101401.

    Article  Google Scholar 

  8. WANG Shao-feng, LI Xi-bing, YAO Jin-rui, et al. Experimental investigation of rock breakage by a conical pick and its application to non-explosive mechanized mining in deep hard rock [J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 122: 104063. DOI: https://doi.org/10.1016/j.ijrmms.2019.104063.

    Article  Google Scholar 

  9. WU Xiao-dong, GONG Min, WU Hao-jun, et al. Parameter calculation of the initiating circuit with mixed use of nonel detonators and electronic detonators in tunnel controlled-blasting [J]. Tunnelling and Underground Space Technology, 2021, 113: 103975. DOI: https://doi.org/10.1016/j.tust.2021.103975.

    Article  Google Scholar 

  10. WANG Xiao-fei, HU Shao-bin, WANG En-yuan. Experimental research and fractal analysis of supercritical CO2 pneumatic fracturing under true triaxial stress [J]. Energy & Fuels, 2023, 37(16): 12113–12122. DOI: https://doi.org/10.1021/acs.energyfuels.3c01583.

    Article  CAS  Google Scholar 

  11. GAO Feng, TANG Lei-hu, ZHOU Ke-ping, et al. Mechanism analysis of liquid carbon dioxide phase transition for fracturing rock masses [J]. Energies, 2018, 11(11): 2909. DOI: https://doi.org/10.3390/en11112909.

    Article  CAS  Google Scholar 

  12. WANG Shao-feng, TANG Yu, WANG Shan-yong. Influence of brittleness and confining stress on rock cuttability based on rock indentation tests [J]. Journal of Central South University, 2021, 28(9): 2786–2800. DOI: https://doi.org/10.1007/s11771-021-4766-y.

    Article  Google Scholar 

  13. ZHANG Ya-nan, DENG Jun-ren, DENG Hong-wei, et al. Peridynamics simulation of rock fracturing under liquid carbon dioxide blasting [J]. International Journal of Damage Mechanics, 2019, 28(7): 1038–1052. DOI: https://doi.org/10.1177/1056789518807532.

    Article  CAS  Google Scholar 

  14. GOODARZI M, MOHAMMADI S, JAFARI A. Numerical analysis of rock fracturing by gas pressure using the extended finite element method [J]. Petroleum Science, 2015, 12(2): 304–315. DOI: https://doi.org/10.1007/s12182-015-0017-x.

    Article  CAS  Google Scholar 

  15. XIE Xiao-feng, LI Xi-bing, LI Qi-yue, et al. Review of liquid CO2 phase transformation rock breaking technology [J]. Journal of Railway Science and Engineering, 2018. DOI: https://doi.org/10.19713/j.cnki.43-1423/u.2018.06.006. (in Chinese)

  16. CHEN Hai-dong, WANG Zhao-feng, QI Ling-ling, et al. Effect of liquid carbon dioxide phase change fracturing technology on gas drainage [J]. Arabian Journal of Geosciences, 2017, 10(14): 314. DOI: https://doi.org/10.1007/s12517-017-3103-0.

    Article  Google Scholar 

  17. TORNO S, TORAÑO J, MENÉNDEZ M, et al. CFD simulation of blasting dust for the design of physical barriers [J]. Environmental Earth Sciences, 2011, 64(1): 73–83. DOI: https://doi.org/10.1007/s12665-010-0818-6.

    Article  ADS  Google Scholar 

  18. LI Qi-yue, LIU Xiao-xiong, WU Zheng-yu, et al. Application of liquid CO2 phase change rock breaking technology in subway foundation pit excavation [J]. Journal of Railway Science and Engineering. 2018, 15(1): 163–169. DOI: https://doi.org/10.19713/j.cnki.43-1423/u.2018.01.021. (in Chinese)

    CAS  Google Scholar 

  19. HU Shao-bin, PANG Shuo-gang, YAN Zheng-yong. A new dynamic fracturing method: Deflagration fracturing technology with carbon dioxide [J]. International Journal of Fracture, 2019, 220(1): 99–111. DOI: https://doi.org/10.1007/s10704-019-00403-8.

    Article  CAS  Google Scholar 

  20. WANG Xiao-fei, HU Shao-bin, WANG En-yuan, et al. Extraction of vibration waveform characteristics of dry ice powder pneumatic rock breaking using Hilbert-Huang transform [J]. Arabian Journal of Geosciences, 2021, 15(1): 1–15. DOI: https://doi.org/10.1007/s12517-021-09236-z.

    Article  ADS  Google Scholar 

  21. WANG Xiao-fei, HU Shao-bin, WANG En-yuan, et al. Experimental research and energy analysis of a new type of dry ice powder pneumatic rock breaking technology [J]. International Journal of Mining Science and Technology, 2023, 33(4): 423–435. DOI: https://doi.org/10.1016/j.ijmst.2022.12.010.

    Article  Google Scholar 

  22. XIA Yu-qing, JIANG Nan, ZHOU Chuan-bo, et al. Safety assessment of upper water pipeline under the blasting vibration induced by Subway tunnel excavation [J]. Engineering Failure Analysis, 2019, 104: 626–642. DOI: https://doi.org/10.1016/j.engfailanal.2019.06.047.

    Article  Google Scholar 

  23. HUANG Dan, CUI Shuo, LI Xiao-qing. Wavelet packet analysis of blasting vibration signal of mountain tunnel [J]. Soil Dynamics and Earthquake Engineering, 2019, 117: 72–80. DOI: https://doi.org/10.1016/j.soildyn.2018.11.025.

    Article  Google Scholar 

  24. SHU D Q, LI X L, ZHAN X J, et al. Observation and analysis of blasting vibration on the right banks high slope of Longtan Hydropower [J]. Blasting, 2002, 19(4): 65–67. (in Chinese)

    Google Scholar 

  25. TAN W H, QU S J, MAO S L, et al. Altitude effect of blasting vibration in slopes [J]. Chinese Journal of Geotechnical Engineering. 2010, 32(4): 619–623. (in Chinese)

    Google Scholar 

  26. MONJEZI M, HASANIPANAH M, KHANDELWAL M. Evaluation and prediction of blast-induced ground vibration at Shur River Dam, Iran, by artificial neural network [J]. Neural Computing and Applications, 2013, 22(7): 1637–1643. DOI: https://doi.org/10.1007/s00521-012-0856-y.

    Article  Google Scholar 

  27. ZHU K, ZHONG D W, ZHOU G S, et al. Research and application of carbon dioxide expansion blasting disposable fracturing tube performance [J]. Blasting, 2022, 39(2): 132–139. (in Chinese)

    Google Scholar 

  28. YANG Xue-lin, WEN Guang-cai, SUN Hai-tao, et al. Environmentally friendly techniques for high gas content thick coal seam stimulation—Multi-discharge CO2 fracturing system [J]. Journal of Natural Gas Science and Engineering, 2019, 61: 71–82. DOI: https://doi.org/10.1016/j.jngse.2018.11.006.

    Article  CAS  Google Scholar 

  29. BAI Xin, ZHANG Dong-ming, ZENG Sheng, et al. An enhanced coalbed methane recovery technique based on CO2 phase transition jet coal-breaking behavior [J]. Fuel, 2020, 265: 116912. DOI: https://doi.org/10.1016/j.fuel.2019.116912.

    Article  CAS  Google Scholar 

  30. HU Guo-zhong, HE Wen-rui, SUN Miao. Enhancing coal seam gas using liquid CO2 phase-transition blasting with cross-measure borehole [J]. Journal of Natural Gas Science and Engineering, 2018, 60: 164–173. DOI: https://doi.org/10.1016/j.jngse.2018.10.013.

    Article  CAS  Google Scholar 

  31. WANG Bo, QIU Wan-yong, LIU Sheng-dong, et al. Supercritical CO2 source for underground seismic exploration [J]. Journal of King Saud University-Science, 2020, 32(2): 1731–1737. DOI: https://doi.org/10.1016/j.jksus.2020.01.010.

    Article  Google Scholar 

  32. WU Fa-quan, QIAO Lei, GUAN Sheng-gong, et al. Uniaxial compression test study on size effect of small size rock samples [J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(5): 865–873. DOI: https://doi.org/10.13722/j.cnki.jrme.2020.0555. (in Chinese)

    Google Scholar 

  33. WANG Zhong-kang, GU Xiao-wei, ZHANG Wen-long, et al. Analysis of the cavity formation mechanism of wedge cut blasting in hard rock [J]. Shock and Vibration, 2019: 1828313. DOI: https://doi.org/10.1155/2019/1828313.

  34. ZHU Zhe-ming, XIE He-ping, MOHANTY B. Numerical investigation of blasting-induced damage in cylindrical rocks [J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(2): 111–121. DOI: https://doi.org/10.1016/j.ijrmms.2007.04.012.

    Article  Google Scholar 

  35. SUN K M, WANG J R, et al. Study on the secondary crack expansion law of gas wedge action in supercritical CO2 airburst coal rock bodies under different stress difference conditions[J]. Journal of Applied Mechanics, 2019, 36(2): 466–472. (in Chinese)

    Google Scholar 

  36. SHENG X, JONES C J C, PETYT M. Ground vibration generated by a load moving along a railway track [J]. Journal of Sound and Vibration, 1999, 228(1): 129–156. DOI: https://doi.org/10.1006/jsvi.1999.2406.

    Article  ADS  Google Scholar 

  37. XIE Wei, GAO Guang-yun, SONG Jian, et al. Ground vibration analysis under combined seismic and high-speed train loads [J]. Underground Space, 2022, 7(3): 363–379. DOI: https://doi.org/10.1016/j.undsp.2021.10.001.

    Article  Google Scholar 

  38. JONES D V, PETYT M. Ground vibration in the vicinity of a strip load: A two-dimensional half-space model [J]. Journal of Sound and Vibration, 1991, 147(1): 155–166. DOI: https://doi.org/10.1016/0022-460X(91)90689-H.

    Article  ADS  Google Scholar 

  39. YANG Y B, HUNG H H, CHANG D W. Train-induced wave propagation in layered soils using finite/infinite element simulation [J]. Soil Dynamics and Earthquake Engineering, 2003, 23(4): 263–278. DOI: https://doi.org/10.1016/S0267-7261(03)00003-4.

    Article  Google Scholar 

  40. IMPROTA L, DI GIULIO G, ROVELLI A. Variations of local seismic response in Benevento (Southern Italy) using earthquakes and ambient noise recordings [J]. Journal of Seismology, 2005, 9(2): 191–210. DOI: https://doi.org/10.1007/s10950-005-3987-0.

    Article  ADS  Google Scholar 

  41. XIAO Yong-gang, CAO Jie, LIU Xiao-min, et al. Effect of open-pit blasting vibrations on a hanging-wall slope: A case study of the Beizhan iron mine in China [J]. Geofluids, 2022: 6943834. DOI: https://doi.org/10.1155/2022/6943834.

  42. HIMANSHU V K, ROY M P, MISHRA A K, et al. Multivariate statistical analysis approach for prediction of blast-induced ground vibration [J]. Arabian Journal of Geosciences, 2018, 11(16): 460. DOI: https://doi.org/10.1007/s12517-018-3796-8.

    Article  Google Scholar 

  43. ZHANG Chang-suo, HU Feng, ZOU S. Effects of blast induced vibrations on the fresh concrete lining of a shaft [J]. Tunnelling and Underground Space Technology, 2005, 20(4): 356–361. DOI: https://doi.org/10.1016/j.tust.2005.01.001.

    Article  Google Scholar 

  44. LANGFORS U. The modern technique of rock blasting [M]. New York: John Wiley and Sons, 1973.

    Google Scholar 

  45. HOLMBERG R, PERSSON P A. The Swedish approach to contour blasting [C]// Proceedings of the 4th Conference on Explosive and Blasting Technique. New Orleans: ISEE, 1978: 113–127.

    Google Scholar 

  46. ANSELL A. Recommendations for shotcrete on rock subjected to blasting vibrations, based on finite element dynamic analysis [J]. Magazine of Concrete Research, 2005, 57(3): 123–133. DOI: https://doi.org/10.1680/macr.2005.57.3.123.

    Article  CAS  Google Scholar 

  47. WANG Wen-jie, SONG Qian-qiang, XU Chao-shui, et al. Mechanical behaviour of fully grouted GFRP rock bolts under the joint action of pre-tension load and blast dynamic load [J]. Tunnelling and Underground Space Technology, 2018, 73: 82–91. DOI: https://doi.org/10.1016/j.tust.2017.12.007.

    Article  Google Scholar 

  48. WU Gen-shui, YU Wei-jian, ZUO Jian-ping, et al. Experimental investigation on rockburst behavior of the rock-coal-bolt specimen under different stress conditions [J]. Scientific Reports, 2020, 10: 7556. DOI: https://doi.org/10.1038/s41598-020-64513-3.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  49. LIANG Qing-guo, LI Jie, LI De-wu, et al. Effect of blast-induced vibration from new railway tunnel on existing adjacent railway tunnel in Xinjiang, China [J]. Rock Mechanics and Rock Engineering, 2013, 46(1): 19–39. DOI: https://doi.org/10.1007/s00603-012-0259-5.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

WANG Xiao-fei developed the overarching research goals and edited the draft of the manuscript. HU Shao-bin conducted the literature review and wrote the manuscript. WANG En-yuan validated the proposed method with practical experiments and wrote the first draft of the manuscript.

Corresponding authors

Correspondence to Shao-bin Hu  (胡少斌) or En-yuan Wang  (王恩元).

Ethics declarations

WANG Xiao-fei, HU Shao-bin, and WANG Enyuan declare that they have no conflict of interest.

Additional information

Foundation item: Project(51934007) supported by the Key Project of the National Natural Science Foundation of China; Project (2022YFC3004700) supported by the National Key Research and Development Programme of China; Project (BK20201313) supported by the Natural Science Foundation of Jiangsu Province, China; Project(2019JZZY020505) supported by the Major Scientific and Technological Innovation Project of Shandong Province, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Xf., Hu, Sb. & Wang, Ey. Study of slope vibration site effects and energy analysis from CO2 static blasting. J. Cent. South Univ. 31, 210–224 (2024). https://doi.org/10.1007/s11771-023-5466-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-023-5466-6

Key words

关键词

Navigation