Skip to main content
Log in

Non-isothermal aging behavior of a friction-surfaced Al-Cu-Mg alloy matrix composite coating reinforced by nickel-aluminide

镍铝化物增强摩擦堆焊 Al-Cu-Mg 合金基复合涂层的非等温时效行为

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

This study investigates the effect of nickel-aluminide on Al-Cu-Mg alloys’ non-isothermal aging behavior. The microstructure, mechanical properties, and corrosion resistance of nickel-aluminide-containing Al-Cu-Mg alloys were evaluated after non-isothermal aging treatment. The results show that the presence of nickel aluminide in the Al-Cu-Mg alloy changes the nature of S-Al2CuMg precipitates to θ-Al2Cu precipitates by adding 1.5 wt% Ni to the Al-Cu-Mg matrix. The non-isothermal aging treatment temperature for achieving the maximum mechanical properties during non-isothermal aging shifted from 250 °C to 300 °C. Compared to isothermal artificial aging treatment at 170 °C, the maximum hardness and mechanical properties increased by up to 9% in a nickel-aluminide containing Al-Cu-Mg alloy after non-isothermal aging treatment. The nickel-aluminide containing sample’s maximum hardness and shear strength is HV0.1(143.4±6.4) and (298.6±9.6) MPa, respectively occurring at 300 °C. After non-isothermal aging treatment, the corrosion current intensity was reduced by approximately 58% and 49% in the nickel-containing coating compared to the AA2024 aluminum alloy substrate and coating without nickel-aluminide, respectively. Compared with the conventional artificial aging treatment, the corrosion current decreased by 16.7% more after non-isothermal aging treatment in the nickel-aluminide-containing coating.

摘要

本文研究了镍铝化物对 Al-Cu-Mg 合金非等温时效行为的影响. 对经非等温时效处理的含镍铝化物 Al-Cu-Mg 合金的组织、 力学性能和耐蚀性进行了评价. 结果表明, 在 Al-Cu-Mg 基体中加入 1.5 wt% Ni 后, Al-Cu-Mg 基体中镍铝化物的存在使析出物由 S-Al2CuMg 转变为 θ-Al2Cu. 在非等温时效过程中, 达到最大力学性能的非等温时效处理温度由 250 °C 转变为 300 °C. 与 170 °C 等温人工时效处理相比, 经非等温时效处理的含镍铝化物 Al-Cu-Mg 合金的最大硬度和力学性能均提高了 9%. 含镍铝化物试样在 300 °C 时达到最大硬度和抗剪强度, 分别为 HV0.1(143.4±6.4) 和 (298.6±9.6) MPa. 非等温时效处理后, 与 AA2024 铝合金基体和不含镍铝化物涂层相比, 含镍涂层的腐蚀电流强度分别降低了约 58% 和 49%. 与传统的人工时效处理相比, 经非等温时效处理的含镍铝涂层的腐蚀电流降低了 16.7%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. ABDO H S, SEIKH A H, MOHAMMED J A, et al. Alloying elements effects on electrical conductivity and mechanical properties of newly fabricated Al based alloys produced by conventional casting process [J]. Materials, 2021, 14(14): 3971. DOI: https://doi.org/10.3390/ma14143971.

    Article  Google Scholar 

  2. GUO Xin-peng, LI Hui-jun, PAN Zeng-xi, et al. Microstructure and mechanical properties of ultra-high strength Al-Zn-Mg-Cu-Sc aluminum alloy fabricated by wire + arc additive manufacturing [J]. Journal of Manufacturing Processes, 2022, 79: 576–586. DOI: https://doi.org/10.1016/j.jmapro.2022.05.009.

    Article  Google Scholar 

  3. LIU Fu-chu, ZHU Xiang-zhen, JI Shou-xun. Effects of Ni on the microstructure, hot tear and mechanical properties of Al-Zn-Mg-Cu alloys under as-cast condition [J]. Journal of Alloys and Compounds, 2020, 821: 153458. DOI: https://doi.org/10.1016/j.jallcom.2019.153458.

    Article  Google Scholar 

  4. NATH OP A R, ARUL S. Effect of nickel reinforcement on micro hardness and wear resistance of aluminium alloy Al7075 [J]. Materials Today: Proceedings, 2020, 24: 1042–1051. DOI: https://doi.org/10.1016/j.matpr.2020.04.418.

    Google Scholar 

  5. FARAJOLLAHI R, JAMSHIDI AVAL H, JAMAATI R. Effects of Ni on the microstructure, mechanical and tribological properties of AA2024-Al3NiCu composite fabricated by stir casting process [J]. Journal of Alloys and Compounds, 2021, 887: 161433. DOI: https://doi.org/10.1016/j.jallcom.2021.161433.

    Article  Google Scholar 

  6. THAKARE J G, PANDEY C, MAHAPATRA M M, et al. Thermal barrier coatings—A state of the art review [J]. Metals and Materials International, 2021, 27(7): 1947–1968. DOI: https://doi.org/10.1007/s12540-020-00705-w.

    Article  Google Scholar 

  7. THAKARE J G, PANDEY C, MULIK R S, et al. Mechanical property evaluation of carbon nanotubes reinforced plasma sprayed YSZ-alumina composite coating [J]. Ceramics International, 2018, 44(6): 6980–6989. DOI: https://doi.org/10.1016/j.ceramint.2018.01.131.

    Article  Google Scholar 

  8. KANWAL S, THAKARE J G, PANDEY C, et al. Characterization of slurry-based mullite coating deposited on P91 steel welds [J]. Journal of the Australian Ceramic Society, 2019, 55(2): 519–528. DOI: https://doi.org/10.1007/s41779-018-0258-4.

    Article  Google Scholar 

  9. TUNCER N, BOSE A. Solid-state metal additive manufacturing: A review [J]. JOM, 2020, 72(9): 3090–3111. DOI: https://doi.org/10.1007/s11837-020-04260-y.

    Article  Google Scholar 

  10. BARARPOUR S M, JAMSHIDI AVAL H, JAMAATI R. Effects of Zn powder on alloying during friction surfacing of Al-Mg alloy [J]. Journal of Alloys and Compounds, 2020, 818: 152823. DOI: https://doi.org/10.1016/j.jallcom.2019.152823.

    Article  Google Scholar 

  11. KE Bin, YE Ling-ying, ZHANG Yong, et al. Enhanced mechanical properties and corrosion resistance of an Al-Zn-Mg aluminum alloy through variable-rate non-isothermal aging [J]. Journal of Alloys and Compounds, 2022, 890: 161933. DOI: https://doi.org/10.1016/j.jallcom.2021.161933.

    Article  Google Scholar 

  12. ZHAO Hui, YE Ling-ying, CHENG Quan-shi, et al. Effect of variable rate non-isothermal aging on microstructure and properties of Al-Zn-Mg-Cu alloy [J]. Materials Characterization, 2023, 197: 112715. DOI: https://doi.org/10.1016/j.matchar.2023.112715.

    Article  Google Scholar 

  13. YANG Jie, LIU Hong-feng, ZENG Tao, et al. Effect of non-isothermal aging on the mechanical properties and corrosion resistance of 2A12 aluminum alloy [J]. Materials, 2023, 16(11): 3921. DOI: https://doi.org/10.3390/ma16113921.

    Article  Google Scholar 

  14. ZHAO Hui, YE Ling-ying, CHENG Quan-shi, et al. Enhanced mechanical properties and corrosion resistance of 7055 aluminum alloy through variable-rate non-isothermal aging [J]. Journal of Alloys and Compounds, 2023, 943: 169198. DOI: https://doi.org/10.1016/j.jallcom.2023.169198.

    Article  Google Scholar 

  15. WANG Jian, XIE Jing-pei, MAO Zhi-ping, et al. Microstructure evolution and mechanical properties of the Al-Cu-Mg-Ag alloy during non-isothermal aging [J]. Journal of Alloys and Compounds, 2023, 942: 169031. DOI: https://doi.org/10.1016/j.jallcom.2023.169031.

    Article  Google Scholar 

  16. YANG Xian-wen, CHENG Quan-shi, DONG Yu, et al. Effect of various non-isothermal aging on properties and microstructure of 7055 aluminum alloy [J]. Journal of Materials Research and Technology, 2023, 25: 6275–6287. DOI: https://doi.org/10.1016/j.jmrt.2023.07.068.

    Article  Google Scholar 

  17. TANG Cheng-lu, LUO Bing-hui, BAI Zhen-hai, et al. Effect of non-isothermal ageing on microstructure and mechanical properties of an Al-Cu-Mg-Ag alloy [J]. Materials Science and Engineering A, 2022, 830: 142315. DOI: https://doi.org/10.1016/j.msea.2021.142315.

    Article  Google Scholar 

  18. FARAJOLLAHI R, JAMSHIDI AVAL H, JAMAATI R. Non-isothermal aging behavior of in situ AA2024-Al3NiCu composite [J]. Transactions of Nonferrous Metals Society of China, 2022, 32(7): 2125–2137. DOI: https://doi.org/10.1016/S1003-6326(22)65935-1.

    Article  Google Scholar 

  19. ZANG Chen-yang, XIAO Wen-long, FU Yu, et al. Enhanced properties and homogeneity of Al-Zn-Mg-Cu alloy thick plate by non-isothermal aging [J]. Journal of Alloys and Compounds, 2023, 952: 170023. DOI: https://doi.org/10.1016/j.jallcom.2023.170023.

    Article  Google Scholar 

  20. REZAEI M, AVAL H J. Effect of Cu/Mg ratio on microstructure and corrosion resistance of Al-Cu-Mg-Li cast alloy during non-isothermal aging [J]. Metals and Materials International, 2023, 29(7): 1907–1922. DOI: https://doi.org/10.1007/s12540-022-01363-w.

    Article  Google Scholar 

  21. ZHAN Xin, TANG Jian-guo, LI Hui-zhong, et al. Effects of non-isothermal aging on mechanical properties, corrosion behavior and microstructures of Al-Cu-Mg-Si alloy [J]. Journal of Alloys and Compounds, 2020, 819: 152960. DOI: https://doi.org/10.1016/j.jallcom.2019.152960.

    Article  Google Scholar 

  22. ZHOU Liang, CHEN Kang-hua, CHEN Song-yi, et al. Correlation between stress corrosion cracking resistance and grain-boundary precipitates of a new generation high Zn-containing 7056 aluminum alloy by non-isothermal aging and re-aging heat treatment [J]. Journal of Alloys and Compounds, 2021, 850: 156717. DOI: https://doi.org/10.1016/j.jallcom.2020.156717.

    Article  Google Scholar 

  23. KE Bin, YE Ling-ying, ZHANG Yong, et al. Enhanced strength and electrical conductivities of an Al-Zn-Mg aluminum alloy through a new aging process [J]. Materials Letters, 2021, 304: 130586. DOI: https://doi.org/10.1016/j.matlet.2021.130586.

    Article  Google Scholar 

  24. SEPEHRBAND P, WANG X, JIN H, et al. Microstructural evolution during non-isothermal annealing of a precipitation-hardenable aluminum alloy: Experiment and simulation [J]. Acta Materialia, 2015, 94: 111–123. DOI: https://doi.org/10.1016/j.actamat.2015.04.037.

    Article  Google Scholar 

  25. DEY G K. Physical metallurgy of nickel aluminides [J]. Sadhana, 2003, 28(1): 247–262. DOI: https://doi.org/10.1007/BF02717135.

    Article  Google Scholar 

  26. XIANG Z D, ROSE S R, DATTA P K. Long term oxidation resistance and thermal stability of Ni-aluminide/Fe-aluminide duplex diffusion coatings formed on ferritic steels at low temperatures [J]. Intermetallics, 2009, 17(6): 387–393. DOI: https://doi.org/10.1016/j.intermet.2008.11.009.

    Article  Google Scholar 

  27. JOZWIK P, POLKOWSKI W, BOJAR Z. Applications of Ni3Al based intermetallic alloys—Current stage and potential perceptivities [J]. Materials, 2015, 8(5): 2537–2568. DOI: https://doi.org/10.3390/ma8052537.

    Article  Google Scholar 

  28. VISHWANATHA A D, PANDA B, SHIVANNA D M. Effect of a T6 aging treatment on the corrosion behaviour of in situ AlxNiy reinforced AA6061 composite [J]. Materials Today: Proceedings, 2021, 44: 4112–4117. DOI: https://doi.org/10.1016/j.matpr.2020.10.455.

    Google Scholar 

  29. ABUTHAKIR J, SUBRAMANIAN R, KAVITHA M, et al. Corrosion studies of Alx-Ni insitu intermetallics reinforced Al metal matrix composites [J]. Materials Today: Proceedings, 2020, 28: 1158–1163. DOI: https://doi.org/10.1016/j.matpr.2020.01.100.

    Google Scholar 

  30. MONDOLFO L F. Aluminum alloys: Structure and properties [M]. Elsevier, 2013.

  31. RAHMATI Z, JAMSHIDI AVAL H, NOUROUZI S, et al. Effects of pre-heat treatment of the consumable rod on the microstructural and mechanical properties of the friction surfaced Al-Cu-Mg alloy over pure aluminum [J]. Surface and Coatings Technology, 2021, 410: 126954. DOI: https://doi.org/10.1016/j.surfcoat.2021.126954.

    Article  Google Scholar 

  32. BARARPOUR S M, JAMSHIDI AVAL H, JAMAATI R. Modeling and experimental investigation on friction surfacing of aluminum alloys [J]. Journal of Alloys and Compounds, 2019, 805: 57–68. DOI: https://doi.org/10.1016/j.jallcom.2019.07.010.

    Article  Google Scholar 

  33. HANKE S, DOS SANTOS J F. Comparative study of severe plastic deformation at elevated temperatures of two aluminium alloys during friction surfacing [J]. Journal of Materials Processing Technology, 2017, 247: 257–267. DOI: https://doi.org/10.1016/j.jmatprotec.2017.04.021.

    Article  Google Scholar 

  34. EHRICH J, ROOS A, KLUSEMANN B, et al. Influence of Mg content in Al alloys on processing characteristics and dynamically recrystallized microstructure of friction surfacing deposits [J]. Materials Science and Engineering A, 2021, 819: 141407. DOI: https://doi.org/10.1016/j.msea.2021.141407.

    Article  Google Scholar 

  35. HUMPHREYS F J, HATHERLY M. Recrystallization textures [M]// Recrystallization and Related Annealing Phenomena. Amsterdam: Elsevier, 1995: 327–362. DOI: https://doi.org/10.1016/b978-0-08-041884-1.50017-9.

    Google Scholar 

  36. FARAJOLLAHI R, JAMSHIDI AVAL H, JAMAATI R. Evaluating of the microstructure, texture, and mechanical properties of AA2024-Al3NiCu composites fabricated by the stir casting process [J]. CIRP Journal of Manufacturing Science and Technology, 2022, 37: 204–218. DOI: https://doi.org/10.1016/j.cirpj.2022.01.013.

    Article  Google Scholar 

  37. MORADI M M, JAMSHIDI AVAL H, JAMAATI R. Effect of pre and post welding heat treatment in SiC-fortified dissimilar AA6061-AA2024 FSW butt joint [J]. Journal of Manufacturing Processes, 2017, 30: 97–105. DOI: https://doi.org/10.1016/j.jmapro.2017.08.014.

    Article  Google Scholar 

  38. PIRHAYATI P, JAMSHIDI AVAL H, LOUREIRO A. Characterization of microstructure, corrosion, and tribological properties of a multilayered friction surfaced Al-Mg-Si-Ag alloy [J]. Archives of Civil and Mechanical Engineering, 2022, 22(4): 1–14. DOI: https://doi.org/10.1007/s43452-022-00497-3.

    Article  Google Scholar 

  39. BARARPOUR S M, JAMSHIDI AVAL H, JAMAATI R. Mechanical alloying by friction surfacing process [J]. Materials Letters, 2019, 254: 394–397. DOI: https://doi.org/10.1016/j.matlet.2019.07.113.

    Article  Google Scholar 

  40. ABURADA T, ÜNLÜ N, FITZ-GERALD J M, et al. Effect of Ni as a minority alloying element on the corrosion behavior in Al-Cu-Mg-(Ni) metallic glasses [J]. Scripta Materialia, 2008, 58(8): 623–626. DOI: https://doi.org/10.1016/j.scriptamat.2007.11.041.

    Article  Google Scholar 

  41. CHEN Liang, HOU Yu-zhu, LI Zhi-gang, et al. Enhancing mechanical properties and corrosion resistance of a high strength 7A99 Al alloy by introducing pre-rolling in solution and aging treatments [J]. Journal of Alloys and Compounds, 2022, 898: 162972. DOI: https://doi.org/10.1016/jjallcom.2021.162972.

    Article  Google Scholar 

  42. PAN T A, LIAN Yu-jia, TZENG Y C, et al. Effects of trace Ag and heat treatment on the mechanical properties and corrosion resistance of Al-Zn-Mg-Cu alloys [J]. JOM, 2022, 74(10): 3877–3886. DOI: https://doi.org/10.1007/s11837-022-05416-8.

    Article  Google Scholar 

  43. FARAJOLLAHI R, JAMSHIDI AVAL H, JAMAATI R, et al. Effects of pre- and post-friction surfacing heat treatment on microstructure and corrosion behavior of nickel-aluminide reinforced Al-Cu-Mg alloy [J]. Journal of Alloys and Compounds, 2022, 906: 164211. DOI: https://doi.org/10.1016/j.jallcom.2022.164211.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Ramezanali FARAJOLLAHI participated in investigation, resources, and writing the original draft. Hamed JAMSHIDI AVAL participated in conceptualization, methodology, writing-review & editing, and supervision. Roohollah JAMAATI participated in conceptualization, methodology, writing-review & editing, and supervision. Mousa JAVIDANI participated in conceptualization, methodology, writing-review & editing, and supervision.

Corresponding author

Correspondence to Hamed Jamshidi Aval.

Ethics declarations

Ramezanali FARAJOLLAHI, Hamed JAMSHIDI AVAL, Roohollah JAMAATI, and Mousa JAVIDANI declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farajollahi, R., Jamshidi Aval, H., Jamaati, R. et al. Non-isothermal aging behavior of a friction-surfaced Al-Cu-Mg alloy matrix composite coating reinforced by nickel-aluminide. J. Cent. South Univ. 30, 3696–3708 (2023). https://doi.org/10.1007/s11771-023-5438-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-023-5438-x

Key words

关键词

Navigation