Skip to main content
Log in

Assessment of rigorous solutions for pseudo-dynamic slope stability: Finite-element limit-analysis modelling

地震边坡稳定性有限元塑性极限分析拟动力法研究

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

This study developed a finite-element lower-bound procedure to investigate seismic slope stability in homogeneous and non-homogeneous soils. In order to account for dynamic earthquake inputs, horizontal and vertical accelerations are expressed by the pseudo-dynamic approach, in the form of sinusoidal functions. Within the framework of lower-bound theory, the seismic slope stability analysis is transformed to a linear programming problem subjected to: stress equilibrium, stress discontinuity, stress boundary and yield conditions. An interior-point algorithm implemented into MATLAB was adopted to seek optimal lower-bound solutions of slope bearing capacity and safety factor. The proposed procedure for lower-bound analysis of seismic slope stability was validated by comparing the slope safety factor obtained from different approaches including limit equilibrium and Abaqus. A nonuniform soil slope with linearly varied and layered soil strength parameters and non-associated flow rule are considered, and the corresponding effects on seismic slope stability are discussed. The true solution of safety factor to seismic slope stability is well assessed by rigorous lower and upper bounds with the discrepancy no greater than 4.5%.

摘要

地震诱发边坡失稳是地震灾害的主要类型之一, 开展地震作用下边坡稳定性研究具有重要意义。常规拟静力法无法准确模拟地震波在边坡土体中传播的时间和空间效应, 难以真实反映地震荷载。本文采用拟动力法模拟地震动荷载输入, 基于塑性极限分析下限定理, 结合有限元离散技术, 建立了满足静力平衡条件、屈服条件、应力边界条件和间断条件的地震边坡稳定性有限元极限分析下限法数学规划模型, 基于内点算法寻求边坡超载系数和安全系数的下限解。通过对典型边坡算例分析, 验证了本文方法的正确性。进一步分析了均质土边坡、抗剪强度参数随深度线性增加的非均质土边坡以及双层土边坡的地震稳定性, 讨论了关联和非关联流动准则对地震边坡稳定性的影响。结果表明: 拟静力法和非关联流动法则会低估地震边坡稳定性; 边坡安全系数有限元极限分析下限解与上限解之间的差异小于4.5%, 本文方法计算结果接近地震边坡稳定性真解。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. QIN C B, CHIAN S C. Kinematic analysis of seismic slope stability with a discretisation technique and pseudo-dynamic approach: A new perspective [J]. Géotechnique, 2018, 68(6): 492–503. DOI: https://doi.org/10.1680/jgeot.16.p.200.

    Article  Google Scholar 

  2. QIN Chang-bing, CHIAN S C, DU Sai-zhao. Revisiting seismic slope stability: Intermediate or below-the-toe failure? [J]. Géotechnique, 2020, 70(1): 71–79. DOI: https://doi.org/10.1680/jgeot.18.t.001.

    Article  Google Scholar 

  3. ZHOU Jian-feng, QIN Chang-bing, PAN Qiu-jing, et al. Kinematic analysis of geosynthetics-reinforced steep slopes with curved sloping surfaces and under earthquake regions [J]. Journal of Central South University, 2019, 26(7): 1755–1768. DOI: https://doi.org/10.1007/s11771-019-4131-6.

    Article  Google Scholar 

  4. TANG Ren-hua, MAO Feng-shan, CHEN Chang-fu, et al. Upper bound solution for active thrust of nonhomogeneous cohesive soil considering effects of intermediate principal stress [J]. Journal of Central South University, 2022, 29(2): 582–595. DOI: https://doi.org/10.1007/s11771-022-4902-3.

    Article  Google Scholar 

  5. LYU Cheng, WANG Zhu-hong, ZENG Zheng-qiang, et al. Limit analysis of ultimate uplift capacity and failure mechanism of shallow plate anchors in multi-layered soils [J]. Journal of Central South University, 2022, 29(6): 2049–2061. DOI: https://doi.org/10.1007/s11771-022-5061-2.

    Article  Google Scholar 

  6. QIN Chang-bing, CHIAN S C. Seismic stability of geosynthetic-reinforced walls with variable excitation and soil properties: A discretization-based kinematic analysis [J]. Computers and Geotechnics, 2018, 102: 196–205. DOI: https://doi.org/10.1016/j.compgeo.2018.06.012.

    Article  Google Scholar 

  7. YANG Xiao-li, WEI Jia-jing. Seismic stability for reinforced 3D slope in unsaturated soils with pseudo-dynamic approach [J]. Computers and Geotechnics, 2021, 134: 104124. DOI: https://doi.org/10.1016/j.compgeo.2021.104124.

    Article  Google Scholar 

  8. YANG Xiao-li, YIN Jian-hua. Slope stability analysis with nonlinear failure criterion [J]. Journal of Engineering Mechanics, 2004, 130(3): 267–273. DOI: https://doi.org/10.1061/(asce)0733-9399(2004)130:3(267).

    Article  Google Scholar 

  9. YANG X L, HUANG F. Collapse mechanism of shallow tunnel based on nonlinear Hoek-Brown failure criterion [J]. Tunnelling and Underground Space Technology, 2011, 26(6): 686–691. DOI: https://doi.org/10.1016/j.tust.2011.05.008.

    Article  Google Scholar 

  10. YANG Xiao-li, YIN Jian-hua. Upper bound solution for ultimate bearing capacity with a modified Hoek-Brown failure criterion [J]. International Journal of Rock Mechanics and Mining Sciences, 2005, 42(4): 550–560. DOI: https://doi.org/10.1016/j.ijrmms.2005.03.002.

    Article  Google Scholar 

  11. LI Zheng-wei, YANG Xiao-li. Analysis and design charts for 3D active earth pressure in cohesive soils with cracks [J]. Acta Geotechnica, 2021, 16(10): 3269–3283. DOI: https://doi.org/10.1007/s11440-021-01192-y.

    Article  Google Scholar 

  12. XU Jing-shu, DU Xiu-li, YANG Xiao-li. Stability analysis of 3D geosynthetic-reinforced earth structures composed of nonhomogeneous cohesive backfills [J]. Soil Dynamics and Earthquake Engineering, 2019, 126: 105768. DOI: https://doi.org/10.1016/j.soildyn.2019.105768.

    Article  Google Scholar 

  13. XU Jing-shu, WANG Peng-fu, HUANG Fu, et al. Active earth pressure of 3D earth retaining structure subjected to rainfall infiltration [J]. Engineering Geology, 2021, 293: 106294. DOI: https://doi.org/10.1016/j.enggeo.2021.106294.

    Article  Google Scholar 

  14. ZONG Meng-fan, TIAN Yi, LIANG Rong-zhu, et al. One-dimensional nonlinear consolidation analysis of soil with continuous drainage boundary [J]. Journal of Central South University, 2022, 29(1): 270–281. DOI: https://doi.org/10.1007/s11771-022-4916-x.

    Article  Google Scholar 

  15. WU Wen-bing, WANG Zong-qin, ZHANG Yun-peng, et al. Semi-analytical solution for negative skin friction development on deep foundations in coastal reclamation areas [J]. International Journal of Mechanical Sciences, 2023, 241: 107981. DOI: https://doi.org/10.1016/j.ijmecsci.2022.107981.

    Article  Google Scholar 

  16. LYSMER J. Limit analysis of plane problems in soil mechanics [J]. Journal of the Soil Mechanics and Foundations Division, 1970, 96(4): 1311–1334. DOI: https://doi.org/10.1061/jsfeaq.0001441.

    Article  Google Scholar 

  17. BOTTERO A, NEGRE R, PASTOR J, et al. Finite element method and limit analysis theory for soil mechanics problems [J]. Computer Methods in Applied Mechanics and Engineering, 1980, 22(1): 131–149. DOI: https://doi.org/10.1016/0045-7825(80)90055-9.

    Article  MATH  Google Scholar 

  18. SLOAN S W. Lower bound limit analysis using finite elements and linear programming [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1988, 12(1): 61–77. DOI: https://doi.org/10.1002/nag.1610120105.

    Article  MATH  Google Scholar 

  19. SLOAN S W. Upper bound limit analysis using finite elements and linear programming [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1989, 13(3): 263–282. DOI: https://doi.org/10.1002/nag.1610130304.

    Article  MATH  Google Scholar 

  20. SLOAN S W. Geotechnical stability analysis [J]. Géotechnique, 2013, 63(7): 531–571. DOI: https://doi.org/10.1680/geot.12.rl.001.

    Article  Google Scholar 

  21. SLOAN S W, KLEEMAN P W. Upper bound limit analysis using discontinuous velocity fields [J]. Computer Methods in Applied Mechanics and Engineering, 1995, 127(1–4): 293–314. DOI: https://doi.org/10.1016/0045-7825(95)00868-1.

    Article  MATH  Google Scholar 

  22. ZHOU Jian-feng, CHEN Qing-sheng, WANG Jun-xing. Rigid block based lower-bound limit analysis method for stability analysis of fractured rock mass considering rock bridge effects [J]. Computers and Geotechnics, 2017, 86: 173–180. DOI: https://doi.org/10.1016/j.compgeo.2017.01.016.

    Article  Google Scholar 

  23. QIN Chang-bing, ZHOU Jian-feng. On the seismic stability of soil slopes containing dual weak layers: True failure load assessment by finite-element limit-analysis [J]. Acta Geotechnica, 2023, 18(6): 3153–3175. DOI: https://doi.org/10.1007/s11440-022-01730-2.

    Article  Google Scholar 

  24. ZHOU Jian-feng, WANG Jun-xing. Lower bound limit analysis of wedge stability using block element method [J]. Computers and Geotechnics, 2017, 86: 120–128. DOI: https://doi.org/10.1016/j.compgeo.2016.12.031.

    Article  Google Scholar 

  25. ZHOU Jian-feng, QIN Chang-bing. Stability analysis of unsaturated soil slopes under reservoir drawdown and rainfall conditions: Steady and transient state analysis [J]. Computers and Geotechnics, 2022, 142: 104541. DOI: https://doi.org/10.1016/j.compgeo.2021.104541.

    Article  Google Scholar 

  26. ZHOU Jian-feng, QIN Chang-bing. Influence of soft band on seismic slope stability by finite-element limit-analysis modelling [J]. Computers and Geotechnics, 2023, 158: 105396. DOI: https://doi.org/10.1016/j.compgeo.2023.105396.

    Article  Google Scholar 

  27. LOUKIDIS D, BANDINI P, SALGADO R. Stability of seismically loaded slopes using limit analysis [J]. Géotechnique, 2003, 53(5): 463–479. DOI: https://doi.org/10.1680/geot.53.5.463.37509.

    Article  Google Scholar 

  28. SHIAU J S, LYAMIN A V, SLOAN S W. Bearing capacity of a sand layer on clay by finite element limit analysis [J]. Canadian Geotechnical Journal, 2003, 40(5): 900–915. DOI: https://doi.org/10.1139/t03-042.

    Article  Google Scholar 

  29. WILSON D W, ABBO A J, SLOAN S W, et al. Undrained stability of dual square tunnels [J]. Acta Geotechnica, 2015, 10(5): 665–682. DOI: https://doi.org/10.1007/s11440-014-0340-1.

    Article  Google Scholar 

  30. XIAO Yao, ZHAO Ming-hua, ZHAO Heng, et al. Finite element limit analysis of the bearing capacity of strip footing on a rock mass with voids [J]. International Journal of Geomechanics, 2018, 18(9): 04018108. DOI: https://doi.org/10.1061/(asce)gm.1943-5622.0001262.

    Article  Google Scholar 

  31. UKRITCHON B, KEAWSAWASVONG S. Lower bound stability analysis of plane strain headings in Hoek-Brown rock masses [J]. Tunnelling and Underground Space Technology, 2019, 84: 99–112. DOI: https://doi.org/10.1016/j.tust.2018.11.002.

    Article  Google Scholar 

  32. STEEDMAN R S, ZENG X. The influence of phase on the calculation of pseudo-static earth pressure on a retaining wall [J]. Géotechnique, 1990, 40(1): 103–112.

    Article  Google Scholar 

  33. BASHA B M, BABU G L S. Seismic reliability assessment of internal stability of reinforced soil walls using the pseudo-dynamic method [J]. Geosynthetics International, 2011, 18(5): 221–241. DOI: https://doi.org/10.1680/gein.2011.18.5.221.

    Article  Google Scholar 

  34. NIMBALKAR S, CHOUDHURY D. Sliding stability and seismic design of retaining wall by pseudo-dynamic method for passive case [J]. Soil Dynamics and Earthquake Engineering, 2007, 27(6): 497–505. DOI: https://doi.org/10.1016/j.soildyn.2006.11.006.

    Article  Google Scholar 

  35. PAIN A, CHOUDHURY D, BHATTACHARYYA S K. Seismic stability of retaining wall - soil sliding interaction using modified pseudo-dynamic method [J]. Géotechnique Letters, 2015, 5(1): 56–61. DOI: https://doi.org/10.1680/geolett.14.00116.

    Article  Google Scholar 

  36. ZHOU Jian-feng, QIN Chang-bing. Finite-element upper-bound analysis of seismic slope stability considering pseudo-dynamic approach [J]. Computers and Geotechnics, 2020, 122: 103530. DOI: https://doi.org/10.1016/j.compgeo.2020.103530.

    Article  Google Scholar 

  37. ZHANG Yin. Solving large-scale linear programs by interior-point methods under the Matlab Environment [J]. Optimization Methods and Software, 1998, 10(1): 1–31. DOI: https://doi.org/10.1080/10556789808805699.

    Article  MathSciNet  MATH  Google Scholar 

  38. MEHROTRA S. On the implementation of a primal-dual interior point method [J]. SIAM Journal on Optimization, 1992, 2(4): 575–601. DOI: https://doi.org/10.1137/0802028.

    Article  MathSciNet  MATH  Google Scholar 

  39. WANG Lu-qi, XIAO Ting, LIU Song-lin, et al. Quantification of model uncertainty and variability for landslide displacement prediction based on Monte Carlo simulation [J]. Gondwana Research, 2023. DOI: https://doi.org/10.1016/j.gr.2023.03.006.

  40. LIU Han-long, CHU Jian, KAVAZANJIAN E. Biogeotechnics: A new frontier in geotechnical engineering for sustainability [J]. Biogeotechnics, 2023, 1(1): 100001. DOI: https://doi.org/10.1016/j.bgtech.2023.100001.

    Article  Google Scholar 

  41. ZHANG Yu, HU Xin-lei, WANG Yi-jie, et al. A critical review of biomineralization in environmental geotechnics: Applications, trends, and perspectives [J]. Biogeotechnics, 2023, 1(1): 100003. DOI: https://doi.org/10.1016/j.bgtech.2023.100003.

    Article  Google Scholar 

  42. NIE Jia-yan, CUI Yi-fei, SENETAKIS K, et al. Predicting residual friction angle of lunar regolith based on Chang’e-5 lunar samples [J]. Science Bulletin, 2023, 68(7): 730–739. DOI: https://doi.org/10.1016/j.scib.2023.03.019.

    Article  Google Scholar 

  43. ZHOU Hai-zuo, HU Qi-chao, YU Xiao-xuan, et al. Quantitative bearing capacity assessment of strip footings adjacent to two-layered slopes considering spatial soil variability [J]. Acta Geotechnica, 2023. DOI: https://doi.org/10.1007/s11440-023-01875-8.

  44. ZHOU Hai-zuo, SHI Yi-peng, YU Xiao-xuan, et al. Failure mechanism and bearing capacity of rigid footings placed on top of cohesive soil slopes in spatially random soil [J]. International Journal of Geomechanics, 2023, 23(8): 04023110. DOI: https://doi.org/10.1061/ijgnai.gmeng-8306.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

ZHOU Jian-feng provided the concept and the methodology, performed numerical calculations and the proofing work. ZHENG Zi-yu conducted the literature review and validated the proposed method. BAO Ting edited the manuscript and provided suggestions. TU Bing-xiong edited the manuscript. YU Jian offered some valuable suggestions for the content of the manuscript. QIN Chang-bing provided the concept, wrote and revised the manuscript. All authors replied to reviewers’ comments.

Corresponding author

Correspondence to Chang-bing Qin  (覃长兵).

Ethics declarations

ZHOU Jian-feng, ZHENG Zi-yu, BAO Ting, TU Bing-xiong, YU Jian, and QIN Chang-bing declare that they have no conflict of interest.

Additional information

Foundation item: Projects(52009046, 52108302) supported by the National Natural Science Foundation of China; Project(ZQN-914) supported by the Fundamental Research Funds for the Central Universities, China; Project (3502ZCQXT2022002) supported by the Collaborative Innovation Platform of Fuzhou-Xiamen-Quanzhou National Self-Innovation Zone, China; Project(23ZR1468500) supported by the Natural Science Foundation of Shanghai, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Jf., Zheng, Zy., Bao, T. et al. Assessment of rigorous solutions for pseudo-dynamic slope stability: Finite-element limit-analysis modelling. J. Cent. South Univ. 30, 2374–2391 (2023). https://doi.org/10.1007/s11771-023-5370-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-023-5370-0

Key words

关键词

Navigation