Skip to main content
Log in

Application assessment of hybrid smoothed finite element method for geotechnical deformation and stability analysis

混合光滑有限元法在岩土体变形及稳定性分析中的应用

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

In the node-based smoothed finite element method (NS-FEM), the unknowns including displacement, stress and strain are all stored at element nodes, contributing to good numerical accuracy and implementation convenience of the method. For the geotechnical deformation analyses, however, NS-FEM may cause the non-physically oscillated deformation. In this work, the cause of the non-physical geotechnical deformation behavior associated with NS-FEM is investigated, and it is found that the non-physical geotechnical deformation is attributed to unevenness of the assembled stiffness in NS-FEM. To obviate the non-physical geotechnical deformation problem, the hybrid smoothed finite element method (HS-FEM), as a combination of finite element method (FEM) and NS-FEM, is applied. Based on a flexible strip footing resting on the ground of weightless soil, a linear elastic medium with a circular cavity and a two-layered soil slope, the applicability of HS-FEM(α) with adequate parameter α to geotechnical deformation and stability analysis is validated.

摘要

在节点光滑有限元法(NS-FEM)中, 位移、应力和应变等变量均存储于单元节点, 有助于该方法的数值精度提升和便利实施。然而, 在岩土体变形分析中, NS-FEM可能会导致非物理的变形。本文针对该问题, 对NS-FEM引起岩土体非物理变形的原因进行研究, 发现非物理变形由NS-FEM组装刚度的不均匀引起。为了避免或减轻组装刚度的不均匀问题, 采用有限元法(FEM)和NS-FEM的组合方法, 即混合光滑有限元法(HS-FEM), 对岩土体变形和稳定性进行分析。分别对平面应变条件下柔性条形基础(不考虑土体自重)、带有圆形孔洞的线弹性介质和双层土质边坡问题进行分析, 结果表明:结合推荐的α 值, HS-FEM(α)在岩土体变形和稳定性分析中具有较好的应用效果和适用性。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. SLOAN S W. Geotechnical stability analysis [J]. Géotechnique, 2013, 63(7): 531–571. DOI: https://doi.org/10.1680/geot.12.rl.001.

    Article  Google Scholar 

  2. LIU G R, DAI K Y, NGUYEN T T. A smoothed finite element method for mechanics problems [J]. Computational Mechanics, 2007, 39(6): 859–877. DOI: https://doi.org/10.1007/s00466-006-0075-4.

    Article  MATH  Google Scholar 

  3. LIU G R, CHEN L, NGUYEN-THOI T, et al. A novel singular node-based smoothed finite element method (NS-FEM) for upper bound solutions of fracture problems [J]. International Journal for Numerical Methods in Engineering, 2010, 83(11): 1466–1497. DOI: https://doi.org/10.1002/nme.2868.

    Article  MathSciNet  MATH  Google Scholar 

  4. NGUYEN-THOI T, VU-DO H C, RABCZUK T, et al. A node-based smoothed finite element method (NS-FEM) for upper bound solution to visco-elastoplastic analyses of solids using triangular and tetrahedral meshes [J]. Computer Methods in Applied Mechanics and Engineering, 2010, 199(45–48): 3005–3027. DOI: https://doi.org/10.1016/j.cma.2010.06.017.

    Article  MathSciNet  MATH  Google Scholar 

  5. NGUYEN-THOI T, LIU G R, NGUYEN-XUAN H, et al. Adaptive analysis using the node-based smoothed finite element method (NS-FEM) [J]. International Journal for Numerical Methods in Biomedical Engineering, 2011, 27(2): 198–218. DOI: https://doi.org/10.1002/cnm.1291.

    Article  MathSciNet  MATH  Google Scholar 

  6. YUAN Wei-hai, WANG Bin, ZHANG Wei, et al. Development of an explicit smoothed particle finite element method for geotechnical applications [J]. Computers and Geotechnics, 2019, 106: 42–51. DOI: https://doi.org/10.1016/j.compgeo.2018.10.010.

    Article  Google Scholar 

  7. JIN Yin-fu, YIN Zhen-yu, ZHOU Xi-wen, et al. A stable node-based smoothed PFEM for solving geotechnical large deformation 2D problems [J]. Computer Methods in Applied Mechanics and Engineering, 2021, 387: 114179. DOI: https://doi.org/10.1016/j.cma.2021.114179.

    Article  MathSciNet  MATH  Google Scholar 

  8. MENG Jing-jing, ZHANG Xue, HUANG Jin-song, et al. A smoothed finite element method using second-order cone programming [J]. Computers and Geotechnics, 2020, 123: 103547. DOI: https://doi.org/10.1016/j.compgeo.2020.103547.

    Article  Google Scholar 

  9. CHAI Ying-bin, LI Wei, GONG Zhi-xiong, et al. Hybrid smoothed finite element method for two-dimensional underwater acoustic scattering problems [J]. Ocean Engineering, 2016, 116: 129–141. DOI: https://doi.org/10.1016/j.oceaneng.2016.02.034.

    Article  Google Scholar 

  10. PIAN T H H, WU Chang-chun. Hybrid and incompatible finite element methods [M]. Boca Raton: Chapman & Hall/CRC, 2006.

    MATH  Google Scholar 

  11. FENG H, CUI X Y, LI G Y. A stable nodal integration method with strain gradient for static and dynamic analysis of solid mechanics [J]. Engineering Analysis with Boundary Elements, 2016, 62: 78–92. DOI: https://doi.org/10.1016/j.enganabound.2015.10.001.

    Article  MathSciNet  MATH  Google Scholar 

  12. TIMOSHENKO S, GOODIER J N. Theory of elasticity [M]. 3rd edition. New York: McGraw-Hill, 1970.

    MATH  Google Scholar 

  13. NAEINI S A, RABE B K, MAHMOODI E. Bearing capacity and settlement of strip footing on geosynthetic reinforced clayey slopes [J]. Journal of Central South University, 2012, 19(4): 1116–1124. DOI: https://doi.org/10.1007/s11771-012-1117-z.

    Article  Google Scholar 

  14. WANG Li, ZHENG Gang, OU Ruo-nan. Finite element analysis of effect of soil displacement on bearing capacity of single friction pile [J]. Journal of Central South University, 2014, 21(5): 2051–2058. DOI: https://doi.org/10.1007/s11771-014-2154-6.

    Article  Google Scholar 

  15. WANG Dong-yong, CHEN Xi, YU Yu-zhen, et al. Stability and deformation analysis for geotechnical problems with nonassociated plasticity based on second-order cone programming [J]. International Journal of Geomechanics, 2019, 19(2): 1–13. DOI: https://doi.org/10.1061/(asce)gm.1943-5622.0001339.

    Article  MathSciNet  Google Scholar 

  16. CHEN Xi, WANG Dong-yong, YU Yu-zhen, et al. A modified Davis approach for geotechnical stability analysis involving non-associated soil plasticity [J]. Géotechnique, 2020, 70(12): 1109–1119. DOI: https://doi.org/10.1680/jgeot.18.p.158.

    Article  Google Scholar 

  17. CHENG Y M, LANSIVAARA T, WEI W B. Two-dimensional slope stability analysis by limit equilibrium and strength reduction methods [J]. Computers and Geotechnics, 2007, 34(3): 137–150. DOI: https://doi.org/10.1016/j.compgeo.2006.10.011.

    Article  Google Scholar 

  18. ZIENKIEWICZ O C, HUMPHESON C, LEWIS R W. Discussion: Associated and non-associated visco-plasticity and plasticity in soil mechanics [J]. Géotechnique, 1977, 27(1): 101–102. DOI: https://doi.org/10.1680/geot.1977.27.1.101.

    Article  Google Scholar 

  19. CHEN Xi, WU Yong-kang, YU Yu-zhen, et al. A two-grid search scheme for large-scale 3-D finite element analyses of slope stability [J]. Computers and Geotechnics, 2014, 62: 203–215. DOI: https://doi.org/10.1016/j.compgeo.2014.07.010.

    Article  Google Scholar 

  20. WANG Dong-yong, CHEN Xi, QI Ji-lin, et al. Assessment on strength reduction schemes for geotechnical stability analysis involving the Drucker-Prager criterion [J]. Journal of Central South University, 2021, 28(10): 3238–3245. DOI: https://doi.org/10.1007/s11771-021-4828-1.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi Chen  (陈曦).

Additional information

Contributors

LYU Yan-nan provided the methodology and wrote the original draft. CHEN Xi provided the concept, and supervised the project. TANG Jian-bin performed some investigations. CUI Liu-sheng and LIU Zong-qi conducted data curation.

Conflict of interest

LYU Yan-nan, CHEN Xi, TANG Jian-bin, CUI Liu-sheng, LIU Zong-qi declare that they have no conflict of interest.

Foundation item

Project(52178309) supported by the National Natural Science Foundation of China; Project(2017YFC0804602) supported by the National Key R&D Program of China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyu, Yn., Chen, X., Tang, Jb. et al. Application assessment of hybrid smoothed finite element method for geotechnical deformation and stability analysis. J. Cent. South Univ. 30, 919–933 (2023). https://doi.org/10.1007/s11771-023-5285-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-023-5285-9

Key words

关键词

Navigation