Skip to main content
Log in

Cassiterite beneficiation in China: A mini-review

中国锡石选矿概述

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Tin is indispensable for the development of advanced technology and cassiterite is the only mineral of commercial importance, from which tin can be extracted economically. In the past two decades, tin reserves in China have experienced a rapid decline because of active mining activities; simultaneously, cassiterite beneficiation has been facing with the many dilemmas like lower tin-grade, finer grain size, and more complicated mineralogy. Therefore, a review has been made here to summarize the development and progress on the recovery of tin from natural resources and secondary resources in China by demonstrating a series of breakthroughs made in process flowsheet, gravity separation equipment, innovative flotation theories, fine particles flotation, new cassiterite collectors, and tin recycling technologies in recent years, which will doubtlessly contribute to increasing tin resource utilization rate and promoting sustainable development of tin industry whether in China or the world. As for the future, the research and development of fine or ultra-fine cassiterite gravity separation equipment, green and low lost cassiterite flotation reagent, as well as the reusing and recycling of tin from tin-containing secondary resources deserve more attention, which will encourage researchers to move forward.

摘要

锡是高新技术领域不可或缺的战略金属; 而锡石是目前最具有商业开采价值的矿物,从中可以 经济地提取锡。在过去20 年中,由于密集的采矿活动,中国的锡储量迅速下降; 与此同时,锡石选别 也面临着“贫、细、杂”等诸多难题。为此,本文从锡石选矿工艺流程、重选设备、微细粒浮选、新 型锡石捕收剂、创新浮选理论,以及再生锡回收技术等方面总结了我国近年在自然资源或二次资源回 收锡取得的系列突破,这无疑将有助于提高我国乃至世界锡资源的利用率。研究人员未来可以在细粒 或超细粒锡石重选设备、绿色且低成本锡石浮选药剂的研发,以及含锡二次资源中锡的再利用和回收 等方面继续开展深入研究,以促进锡行业的可持续发展。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. International Tin Association. 2016 report on global tin resources & reserves [EB/OL]. [2020-01-25]. https://www.internationaltin.org/it-reports/.

  2. YANG Cong-ren, TAN Quan-yin, ZENG Xian-lai, et al. Measuring the sustainability of tin in China [J]. Science of the Total Environment, 2018, 635: 1351–1359. DOI: https://doi.org/10.1016/j.scitotenv.2018.04.073.

    Article  Google Scholar 

  3. U. S. Geological Survey. Tin statistics and information 2019 [EB/OL]. [2019-12-25]. https://www.usgs.gov/centers/national-minerals-information-center/tin-statistics-and-information.

  4. YANG Cong-ren, LI Jin-hui, TAN Quan-yin, et al. Green process of metal recycling: Coprocessing waste printed circuit boards and spent tin stripping solution [J]. ACS Sustainable Chemistry & Engineering, 2017, 5(4): 3524–3534. DOI: https://doi.org/10.1021/acssuschemeng.7b00245.

    Article  Google Scholar 

  5. YANG Cong-ren, TAN Quan-yin, LIU Li-li, et al. Recycling tin from electronic waste: A problem that needs more attention [J]. ACS Sustainable Chemistry & Engineering, 2017, 5(11): 9586–9598. DOI: https://doi.org/10.1021/acssuschemeng.7b02903.

    Article  Google Scholar 

  6. LI Hao-dong, QIN Wen-qing, LI Jin-hui, et al. Tracing the global tin flow network: Highly concentrated production and consumption [J]. Resources, Conservation and Recycling, 2021, 169: 105495. DOI: https://doi.org/10.1016/j.resconrec.2021.105495.

    Article  Google Scholar 

  7. U. S. Geological Survey. Mineral commodity summaries. USGS 2001–2019 [EB/OL]. [2019-12-25]. https://www.usgs.gov/centers/national-minerals-information-center/mineral-commodity-summaries.

  8. International Trade Centre. 2609-tin ores and concentrates 2019 [EB/OL]. [2019-12-20]. https://www.trademap.org/Index.aspx.

  9. Insight & Info Consulting Ltd. Analysis of global tin industry consumption and downstream solder demand growth in 2017 [EB/OL]. [2021-02-15]. https://market.chinabaogao.com/yejin/10112a1W2017.html.

  10. ZHANG Fu-liang, YIN Teng-fei, ZHOU Nan. The current situation and thinking of the tin ore resources development and utilization all over the world [J]. Modern Mining, 2014, 30(2): 1–4, 10. (in Chinese)

    Google Scholar 

  11. PENG Wei, TONG Xiong, ZHANG Zi-jiang, et al. The present situation and development of cassiterite flotation reagent [J]. Value Engineering, 2017, 36(8): 234–237. DOI: https://doi.org/10.14018/j.cnki.cn13-1085/n.2017.08.095. (in Chinese)

    Google Scholar 

  12. LAN Xi-xiong, HE Dong, HE Qing-lang. Practice and prospect on flotation of fine cassiterite [J]. Acta Mineralogica Sinica, 2016, 36(4): 544–548. DOI: https://doi.org/10.16461/j.cnki.1000-4734.2016.04.014. (in Chinese)

    Google Scholar 

  13. REN Xiang, LI Yang, LI Quan. Study and practice of SL-type continuous discharge jet centrifugal separator [J]. Metal Mine, 1994(2): 33–36. (in Chinese)

  14. LIU Jie, HAN Yue-xin, ZHU Yi-min, et al. Research status and prospective on separation technology of fine cassiterite [J]. Metal Mine, 2014(10): 76–81. (in Chinese)

  15. ZHANG Hui. Study on mechanisms and application of combined collectors in fine cassiterite flotation [D]. Changsha: Central South University, 2010. (in Chinese)

  16. YANG Bing. Industrial production application research and development on Yun Tin YXB new type fine sand table concentrator [J]. Yunnan Metallurgy, 2020, 49(1): 27–30. (in Chinese)

    Google Scholar 

  17. GAO Ying. Study on treatment of heavy metal ion wastewater by dissolved air flotation [D]. Changsha: Central South University, 2010. (in Chinese)

    Google Scholar 

  18. FENG Shu-xiang. The recovery of fine cassiterite by dissolved-air flotation [J]. Yunnan Metallurgy, 1984(4): 61. (in Chinese)

  19. QIU Guan-zhou, HU Yue-hua, WANG Dian-zuo. The theory and application of coarse particle effect in flotation of fine particles [J]. Journal of Central South University (Science and Technology), 1993, 24(6): 743–748. (in Chinese)

    Google Scholar 

  20. LIANG Rui-lu, SHI Da-xin. Carrier flotation of ultrafine cassiterite particle and its mechanism [J]. Nonferrous Metals, 1990, 42(3): 23–31. (in Chinese)

    Google Scholar 

  21. YANG Zhao-jun, XU Xiao-yi, YUAN Xiang-yi. Experimental study on selective flocculation flotation of low-grade tin slime [J]. China Mining Magazine, 2019, 28(S1): 212–215, 219. (in Chinese)

    Google Scholar 

  22. QIN Wen-qing, REN Liu-yi, WANG Pei-pei, et al. Electroflotation and collision-attachment mechanism of fine cassiterite [J]. Transactions of Nonferrous Metals Society of China, 2012, 22(4): 917–924. DOI: https://doi.org/10.1016/S1003-6326(11)61265-X.

    Article  Google Scholar 

  23. QIN Wen-qing, WANG Pei-pei, REN Liu-yi, et al. Effect of matching relationship between particles and bubbles on the flotation of fine cassiterite [J]. Journal of China University of Mining & Technology, 2012, 41(3): 420–424, 438. (in Chinese)

    Google Scholar 

  24. REN Liu-yi, QIU Hang, QIN Wen-qing, et al. Flotation mechanism of cassiterite with octanohydroxamic acid [J]. Journal of China University of Mining & Technology, 2017, 46(6): 1364–1371. DOI: https://doi.org/10.13247/j.cnki.jcumt.000763. (in Chinese)

    Google Scholar 

  25. REN Liu-yi, ZHANG Yi-min, QIN Wen-qing, et al. Collision and attachment behavior between fine cassiterite particles and H2 bubbles [J]. Transactions of Nonferrous Metals Society of China, 2014, 24(2): 520–527. DOI: https://doi.org/10.1016/S1003-6326(14)63091-0.

    Article  Google Scholar 

  26. LI Er-lei, NIE Qiao-qiao, MIAO Mei-yun, et al. Research on collecting property of fine cassiterite by a new anion collector DMY-1 [J]. Metal Mine, 2016(5): 61–63. (in Chinese)

  27. QIN Wen-qing, XU Yang-bao, LIU Hui, et al. Flotation and surface behavior of cassiterite with salicylhydroxamic acid [J]. Industrial & Engineering Chemistry Research, 2011, 50(18): 10778–10783. DOI: https://doi.org/10.1021/ie200800d.

    Article  Google Scholar 

  28. WANG Pei-pei, QIN Wen-qing, REN Liu-yi, et al. Solution chemistry and utilization of alkyl hydroxamic acid in flotation of fine cassiterite [J]. Transactions of Nonferrous Metals Society of China, 2013, 23(6): 1789–1796. DOI: https://doi.org/10.1016/S1003-6326(13)62662-X.

    Article  Google Scholar 

  29. LIU Chang, LIU Jie, LI Yan-jun, et al. Influences of styrene phosphonic acid on the floatability of fine cassiterite and its mechanism [J]. Metal Mine, 2019(2): 106–110. DOI: https://doi.org/10.19614/j.cnki.jsks.201902020. (in Chinese)

  30. TAN Xin, HE Fa-yu, SHANG Yan-bo, et al. Flotation behavior and adsorption mechanism of (1-hydroxy-2-methyl-2-octenyl) phosphonic acid to cassiterite [J]. Transactions of Nonferrous Metals Society of China, 2016, 26(9): 2469–2478. DOI: https://doi.org/10.1016/S1003-6326(16)64368-6.

    Article  Google Scholar 

  31. LU Zhi-ming, HAN Bin. Research progress and thinking suggestions for the selection of fine-grained cassiterite [J]. World Nonferrous Metals, 2019(7): 180–182. (in Chinese)

  32. HE Ming-fei, LUO Chao-yan, CHEN Yu-ping, et al. Flotation study of fine cassiterite [J]. Mining and Metallurgical Engineering, 2008, 28(4): 29–31. (in Chinese)

    Google Scholar 

  33. WU Chuan-kun, HUANG Run-zhi. Technology practice on decreasing over crushing of cassiterite on tin polymetallic sulfide ore [J]. China Mining Magazine, 2016, 25(6): 118–121. (in Chinese)

    Google Scholar 

  34. WANG Xing-jie, QIN Wen-qing, JIAO Fen, et al. Processing flowsheet research on recovery of stannum minerals from the tailings of cassiterite-polymetallic sulfide ore [J]. Mining Research and Development, 2015, 35(5): 74–77. DOI: https://doi.org/10.13827/j.cnki.kyyk.2015.05.019. (in Chinese)

    Google Scholar 

  35. JIANG Su-fang. Beneficiation process for a high-sulfur cassiterite ore from abroad [J]. Mining and Metallurgical Engineering, 2015, 35(3): 66–69. (in Chinese)

    Google Scholar 

  36. HE Ming-fei, GAO Yu-de, BU Hao, et al. Recovery of low-grade fine cassiterite by gravity and flotation combined process [J]. Nonferrous Metals (Mineral Processing Section), 2019(3): 33–36. (in Chinese)

  37. WU Bo-zeng. Research and practice of key benefication on Dachang complex sulfide minerrals of low-tin, lead, zinc and iron [D]. Changsha: Central South University, 2005. (in Chinese)

    Google Scholar 

  38. CAO Ye, LIU Si-qing, LI Peng. Experimental study on beneficiation of a tin-magnetite ore of Sichuan Province [J]. Metal Mine, 2010(11): 77–79. (in Chinese)

  39. ZHANG Cheng-qiang, LI Hong-chao, ZHANG Hong-xin, et al. Comprehensive utilization process of wolfram and tin ore in baiganhu of Xinjiang [J]. China Tungsten Industry, 2013, 28(3): 31–35. (in Chinese)

    Google Scholar 

  40. LAI Jin-shang. Optimization of cassiterite polymetallic sulfide ore regrinding process [J]. World Nonferrous Metals, 2016(21): 56–57. (in Chinese)

  41. HE Dong, LAN Xi-xiong. Study on cassiterite recovery process on a refractory polymetallic ore of Dulong [J]. Nonferrous Metals (Mineral Processing Section), 2015(1): 36–40. (in Chinese)

  42. GONG Gui-chen, LIU Jie, HAN Yue-xin, et al. Study on flotation performances and adsorption mechanism of 2-carboxyethylphenylphosphinic acid to cassiterite [J]. Separation Science and Technology, 2019, 54(11): 1815–1828. DOI: https://doi.org/10.1080/01496395.2018.1549573.

    Article  Google Scholar 

  43. DONG Tian-long, XUE Chun-hua, AN Heng-yuan. Study on tail throwing of new centrifugal concentrator in cassiterite gravity separation [J]. China High-Tech Enterprises, 2015 (29): 153–154. DOI: https://doi.org/10.13535/j.cnki.11-4406/n.2015.29.077. (in Chinese)

  44. LUO Xian-wei, XU Da-hong. The process research and application of centrifugal separator in recycling the microgranular cassiterite [J]. Nonferrous Metals (Mineral Processing Section), 2018(2): 49–52. (in Chinese)

  45. LI Rui-sheng. Tin slime beneficiation [J]. Non-ferrous Smelting, 2001(5): 30–32. (in Chinese)

  46. LIU Yan. The technical study and application on new mineral processing of cassiterite with fine size fraction in Bali dressing plant [J]. Yunnan Metallurgy, 2016, 45(6): 9–13. (in Chinese)

    Google Scholar 

  47. WANG Qing-fen, ZHANG Feng-sheng. Commercial tests for tailing’s tin with jet flow centriflgal separator [J]. Nonferrous Metals (Mineral Processing Section), 2010(2): 35–37, 25. (in Chinese)

  48. WANG Xing-rong, XIAO Jun, CHEN Dai-xiong, et al. Improvement and innovation of gravity separation process of a copper-zinc-tin cassiterite [J]. Mining & Processing Equipment, 2015, 43(10): 96–101. DOI: https://doi.org/10.16816/j.cnki.ksjx.2015.10.023. (in Chinese)

    Google Scholar 

  49. ZHANG Song, YANG Bo, SUN Huan, et al. Industrial application status of Hang and vibrate of cone concentrator [J]. Multipurpose Utilization of Mineral Resources, 2019(3): 22–26, 35. (in Chinese)

  50. YANG Bo, XIAO Ri-peng, LIU Jie, et al. Experimental study on using hvc concentrator to recover fine cassiterite [J]. Mining and Metallurgy, 2014, 23(2): 73–76. (in Chinese)

    Google Scholar 

  51. HAN Bin, ZHANG Liang-liang, JIA Su-e. Study on new spiral chute selected for fine grained tin ore [J]. World Nonferrous Metals, 2018(10): 76–78. (in Chinese)

  52. LI Guang, XIAO Qin, LI Chu-nou, et al. Design and application of a new-type high efficient spiral chute [J]. Mining & Processing Equipment, 2016, 44(5): 63–66. DOI: https://doi.org/10.16816/j.cnki.ksjx.2016.05.016. (in Chinese)

    Google Scholar 

  53. SUN Yi-zhou, HUANG Run-zhi, WANG Wan-zhong, et al. The experimental study on the recovery of fine cassiterite by vibrating gyratory disc separator [J]. Nonferrous Metals (Mineral Processing Section), 2015(2): 88–90. (in Chinese)

  54. YANG Bo, GE Bao-liang. A new-type gravity separation equipment of fine particle—Vibrating gyratory disc separator [J]. Mining & Processing Equipment, 2000(7): 45. (in Chinese)

  55. ZHANG Wei, NESSET J E, FINCH J A. Correspondence of bubble size and frother partitioning in flotation [J]. Journal of Central South University, 2014, 21(6): 2383–2390. DOI: https://doi.org/10.1007/s11771-014-2191-1.

    Article  Google Scholar 

  56. RODRIGUES R T, RUBIO J. DAF-dissolved air flotation: Potential applications in the mining and mineral processing industry [J]. International Journal of Mineral Processing, 2007, 82(1): 1–13. DOI: https://doi.org/10.1016/j.minpro.2006.07.019.

    Article  Google Scholar 

  57. RUBIO J, CAPPONI F, MATIOLO E, et al. Advances in flotation of mineral fines [C]//Proceedings XXII International Mineral Processing Congress. Cape-Town, África do Sul, 2003: 1002–14.

  58. GREEN E W, DUKE J B. Selective froth flotation of ultrafine minerals or slimes [J]. Minerals Engineering, 1962, 14: 51–55.

    Google Scholar 

  59. SUBRAHMANYAM T V, FORSSBERG K S E. Fine particles processing: Shear-flocculation and carrier flotation —A review [J]. International Journal of Mineral Processing, 1990, 30(3–4): 265–286. DOI: https://doi.org/10.1016/0301-7516(90)90019-U.

    Article  Google Scholar 

  60. LIU Pu-xin. A study on selective flocculationof low-grade fine cassiterite [J]. Mining and Metallurgical Engineering, 1991, 11(1): 41–44. (in Chinese)

    Google Scholar 

  61. WARREN L J. Shear-flocculation of ultrafine scheelite in sodium oleate solutions [J]. Journal of Colloid and Interface Science, 1975, 50(2): 307–318. DOI: https://doi.org/10.1016/0021-9797(75)90234-9.

    Article  Google Scholar 

  62. CHEN Wei, FENG Qi-ming, ZHANG Guo-fan, et al. Effect of energy input on flocculation process and flotation performance of fine scheelite using sodium oleate [J]. Minerals Engineering, 2017, 112: 27–35. DOI: https://doi.org/10.1016/j.mineng.2017.07.002.

    Article  Google Scholar 

  63. YIN Wan-zhong, YANG Xiao-sheng, ZHOU Da-peng, et al. Shear hydrophobic flocculation and flotation of ultrafine Anshan hematite using sodium oleate [J]. Transactions of Nonferrous Metals Society of China, 2011, 21(3): 652–664. DOI: https://doi.org/10.1016/S1003-6326(11)60762-0.

    Article  Google Scholar 

  64. SU Xing-guo, LI Yan-jun, LIU Jie, et al. Shear flocculation and flotation of hematite [J]. Advanced Materials Research, 2010, 158: 224–232. DOI: https://doi.org/10.4028/www.scientific.net/amr.158.224.

    Article  Google Scholar 

  65. QIN wen-qing, REN Liu-yi, XU Yang-bao, et al. Adsorption mechanism of mixed salicylhydroxamic acid and tributyl phosphate collectors in fine cassiterite electro-flotation system [J]. Journal of Central South University, 2012, 19(6): 1711–1717. DOI: https://doi.org/10.1007/s11771-012-1197-9.

    Article  Google Scholar 

  66. QIU Guan-zhou, HU Yue-hua, QIN Wen-qing, et al. The theory and application of coarse particle effect in flotation of fine particles [M]//Scientific and Technological Achievements, 2002. (in Chinese)

  67. WEI Zong-wu, GAO Yang, YANG Mei-jin, et al. Selective flocculation and flotation of ultrafine cassiterite [J]. Mining Research and Development, 2022, 42(1): 42–46. DOI: https://doi.org/10.13827/j.cnki.kyyk.2022.01.003. (in Chinese)

    Google Scholar 

  68. ANGADI S I, SREENIVAS T, JEON H S, et al. A review of cassiterite beneficiation fundamentals and plant practices [J]. Minerals Engineering, 2015, 70: 178–200. DOI: https://doi.org/10.1016/j.mineng.2014.09.009.

    Article  Google Scholar 

  69. LEISTNER T, EMBRECHTS M, LEIßNER T, et al. A study of the reprocessing of fine and ultrafine cassiterite from gravity tailing residues by using various flotation techniques [J]. Minerals Engineering, 2016, 96–97: 94–98. DOI: https://doi.org/10.1016/j.mineng.2016.06.020.

    Article  Google Scholar 

  70. GAO Yue-sheng, GAO Zhi-yong, SUN Wei. Research progress of influence of metal ions on mineral flotation behavior and underlying mechanism [J]. The Chinese Journal of Nonferrous Metals, 2017, 27(4): 859–868. DOI: https://doi.org/10.19476/j.ysxb.1004.0609.2017.04.024. (in Chinese)

    Google Scholar 

  71. SUN Wei, WANG Ruo-lin, HU Yue-hua, et al. Activation and new theory of lead ion in minerals flotation process [J]. Nonferrous Metals (Mineral Processing Section), 2018(2): 91–98. (in Chinese)

  72. GONG Gui-chen, LIU Jie, HAN Yue-xin, et al. Study on the effect and mechanism of Cu2+ on cassiterite flotation [J]. Metal Mine, 2019(2): 102–105. DOI: https://doi.org/10.19614/j.cnki.jsks.201902019. (in Chinese)

  73. TIAN Meng-jie, HU Yue-hua, SUN Wei, et al. Study on the mechanism and application of a novel collector-complexes in cassiterite flotation [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 522: 635–641. DOI: https://doi.org/10.1016/j.colsurfa.2017.02.051.

    Article  Google Scholar 

  74. CAO Yang, SUN Lei, GAO Zhi-yong, et al. Activation mechanism of zinc ions in cassiterite flotation with benzohydroxamic acid as a collector [J]. Minerals Engineering, 2020, 156: 106523. DOI: https://doi.org/10.1016/j.mineng.2020.106523.

    Article  Google Scholar 

  75. CAO Yang, XIE Xian, TONG Xiong, et al. The activation mechanism of Fe(II) ion-modified cassiterite surface to promote salicylhydroxamic acid adsorption [J]. Minerals Engineering, 2021, 160: 106707. DOI: https://doi.org/10.1016/j.mineng.2020.106707.

    Article  Google Scholar 

  76. TIAN Meng-jie, LIU Run-qing, GAO Zhi-yong, et al. Activation mechanism of Fe (III) ions in cassiterite flotation with benzohydroxamic acid collector [J]. Minerals Engineering, 2018, 119: 31–37. DOI: https://doi.org/10.1016/j.mineng.2018.01.011.

    Article  Google Scholar 

  77. HU Yue-hua, HAN Hai-sheng, TIAN Meng-jie, et al. The application of metal-coordinated complexes in the flotation of oxide minerals and fundamental research of the adsorption mechanism [J]. Conservation and Utilization of Mineral Resources, 2018, 38(1): 42–47, 53. DOI: https://doi.org/10.13779/j.cnki.issn1001-0076.2018.01.007. (in Chinese)

    Google Scholar 

  78. YUE Tong, HAN Hai-sheng, HU Yue-hua, et al. Beneficiation and purification of tungsten and cassiterite minerals using Pb-BHA complexes flotation and centrifugal separation [J]. Minerals, 2018, 8(12): 566. DOI: https://doi.org/10.3390/min8120566.

    Article  Google Scholar 

  79. ZHANG Ning-cui. Study on flotation of fine cassiterite [J]. China Metal Bulletin, 2018(4): 131–132. (in Chinese)

  80. LI Fang-xu, ZHONG Hong, ZHAO Gang, et al. Flotation performances and adsorption mechanism of a -hydroxyoctyl phosphinic acid to cassiterite [J]. Applied Surface Science, 2015, 353: 856–864. DOI: https://doi.org/10.1016/j.apsusc.2015.06.147.

    Article  Google Scholar 

  81. HUANG Kai-hua, HUANG Xiao-ping, JIA Yun, et al. A novel surfactant styryl phosphonate mono-iso-octyl ester with improved adsorption capacity and hydrophobicity for cassiterite flotation [J]. Minerals Engineering, 2019, 142: 105895. DOI: https://doi.org/10.1016/j.mineng.2019.105895.

    Article  Google Scholar 

  82. SUN Wei, KE Li-fang, SUN Lei. Study of the application and mechanism of benzohydroxamic acid in the flotation of cassiterite [J]. Journal of China University of Mining & Technology, 2013, 42(1): 62–68. DOI: https://doi.org/10.13247/j.cnki.jcumt.2013.01.012. (in Chinese)

    Google Scholar 

  83. QI Jing, DONG Yan, LIU Sheng, et al. A selective flotation of cassiterite with a dithiocarbamate-hydroxamate molecule and its adsorption mechanism [J]. Applied Surface Science, 2021, 538: 147996. DOI: https://doi.org/10.1016/j.apsusc.2020.147996.

    Article  Google Scholar 

  84. SUN Qing, LU Yu-xi, WANG Shuai, et al. A novel surfactant 2- (benzylthio) -acetohydroxamic acid: Synthesis, flotation performance and adsorption mechanism to cassiterite, calcite and quartz [J]. Applied Surface Science, 2020, 522: 146509. DOI: https://doi.org/10.1016/j.apsusc.2020.146509.

    Article  Google Scholar 

  85. ZENG Qing-hua, ZHANG Xin-hua, JIANG Er-long. Mechanism of cassiterite flotation by Aerosol-22 [J]. Nonferrous Metals Engineering, 1996, 48(4): 29–34. (in Chinese)

    Google Scholar 

  86. CHOI W Z, ZENG Qing-hua, JIANG Er-long, et al. Cassiterite flotation with sulphosuccinamate collector [J]. Geosystem Engineering, 1998, 1(1): 30–34. DOI: https://doi.org/10.1080/12269328.1998.10541122.

    Article  Google Scholar 

  87. WANG Xue-feng, WANG Yi-jie, WEN Shu-ming, et al. Flotation behavior and adsorption mechanism of salicylhydroxamic acid in artificial mineral anosovite [J]. Journal of Central South University, 2019, 26(4): 806–812. DOI: https://doi.org/10.1007/s11771-019-4050-6.

    Article  Google Scholar 

  88. MENG Qing-you, FENG Qi-ming, OU Le-ming. Flotation behavior and adsorption mechanism of fine wolframite with octyl hydroxamic acid [J]. Journal of Central South University, 2016, 23(6): 1339–1344. DOI: https://doi.org/10.1007/s11771-016-3185-y.

    Article  Google Scholar 

  89. LIN Hui-jie, LAN Zhuo-yue, TONG Xiong, et al. The research progress of cassiterite flotation with hydroxamic acid collectors [J]. Conservation and Utilization of Mineral Resources, 2019, 39(5): 174–178. DOI: https://doi.org/10.13779/j.cnki.issn1001-0076.2019.05.014. (in Chinese)

    Google Scholar 

  90. WU X Q, ZHU J G. Selective flotation of cassiterite with benzohydroxamic acid [J]. Minerals Engineering, 2006, 19(14): 1410–1417. DOI: https://doi.org/10.1016/j.mineng.2006.02.003.

    Article  Google Scholar 

  91. FENG Qi-cheng, ZHAO Wen-juan, WEN Shu-ming, et al. Activation mechanism of lead ions in cassiterite flotation with salicylhydroxamic acid as collector [J]. Separation and Purification Technology, 2017, 178: 193–199. DOI: https://doi.org/10.1016/j.seppur.2017.01.053

    Article  Google Scholar 

  92. SUN Lei, HU Yue-hua, SUN Wei. Effect and mechanism of octanol in cassiterite flotation using benzohydroxamic acid as collector [J]. Transactions of Nonferrous Metals Society of China, 2016, 26(12): 3253–3257. DOI: https://doi.org/10.1016/S1003-6326(16)64458-8.

    Article  Google Scholar 

  93. CHEN Wen-yue. Research on the surface properties and floatability of fine cassiterite [D]. Shenyang: Northeastern University, 2014. (in Chinese)

    Google Scholar 

  94. LIU Sheng, LIU Guang-yi, ZHONG Hong, et al. The role of HABTC’s hydroxamate and dithiocarbamate groups in chalcopyrite flotation [J]. Journal of Industrial and Engineering Chemistry, 2017, 52: 359–368. DOI: https://doi.org/10.1016/j.jiec.2017.04.015.

    Article  Google Scholar 

  95. LIU Sheng, XIE Lei, LIU Guang-yi, et al. Hetero-difunctional reagent with superior flotation performance to chalcopyrite and the associated surface interaction mechanism [J]. Langmuir, 2019, 35(12): 4353–4363. DOI: https://doi.org/10.1021/acs.langmuir.9b00156.

    Article  MathSciNet  Google Scholar 

  96. LIU Sheng, LIU Guang-yi, HUANG Yao-guo, et al. Hydrophobic intensification flotation: Comparison of collector containing two minerophilic groups with conventional collectors [J]. Transactions of Nonferrous Metals Society of China, 2020, 30(9): 2536–2546. DOI: https://doi.org/10.1016/S1003-6326(20)65399-7.

    Article  Google Scholar 

  97. CHEN Yu-meng. Basic research on flotation separation of cassiterite from calcite and plagioclase [D]. Kunming: Kunming University of Science and Technology, 2019. (in Chinese)

    Google Scholar 

  98. ZENG Guo-wang, ZHUANG Gu-zhang, ZHANG Xiaorong, et al. Research status on flotation reagents of micro-fine cassiterite [J]. Metal Mine, 2019(1): 115–119. DOI: https://doi.org/10.19614/j.cnki.jsks.201901022. (in Chinese)

  99. TIAN Meng-jie, GAO Zhi-yong, JI Bin, et al. Selective flotation of cassiterite from calcite with salicylhydroxamic acid collector and carboxymethyl cellulose depressant [J]. Minerals, 2018, 8(8): 316. DOI: https://doi.org/10.3390/min8080316.

    Article  Google Scholar 

  100. ZHU Yu-shuang, ZHU Jian-guang. The mixture of F 203 and TBP as collector for the flotation of cassiterite slime [J]. Journal of Central South University (Science and Technology), 1994, 25(1): 122–125. (in Chinese)

    Google Scholar 

  101. YANG Han-xu, TONG Xiong, XIE Xian, et al. Research review of cassiterite flotation [J]. Nonferrous Metals Science and Engineering, 2020, 11(6): 85–91. DOI: https://doi.org/10.13264/j.cnki.ysjskx.2020.06.012. (in Chinese)

    Google Scholar 

  102. LÜ Jin-fang, TONG Xiong, ZHOU Yong-cheng. Research status on flotation reagents for fine cassiterite [J]. Hydrometallurgy of China, 2010, 29(2): 71–74. DOI: https://doi.org/10.13355/j.cnki.sfyj.2010.02.005. (in Chinese)

    Google Scholar 

  103. WANG Xun, LIU Wei, JIAO Fen, et al. New insights into the mechanism of selective flotation of copper and copper-tin alloy [J]. Separation and Purification Technology, 2020, 253: 117497. DOI: https://doi.org/10.1016/j.seppur.2020.117497.

    Article  Google Scholar 

  104. PENG Si-yao, YANG Jian-guang, CHEN Bing, et al. Novel process for tin recovery from stannous secondary resources based on membrane electrodeposition [J]. The Chinese Journal of Nonferrous Metals, 2016, 26(12): 2656–2667. DOI: https://doi.org/10.19476/j.ysxb.1004.0609.2016.12.022. (in Chinese)

    Google Scholar 

  105. LIU Shu-fen, YANG Sheng-hai, LUO Tao, et al. Comprehensive recovery of Sn-Cu bearing residue and preparation of high purity SnO2 and CuSO4-5H2O [J]. Separation and Purification Technology, 2021, 257: 117826. DOI: https://doi.org/10.1016/j.seppur.2020.117826.

    Article  Google Scholar 

  106. LIU Wei, GU Kun-hong, HAN Jun-wei, et al. Innovative methodology for comprehensive use of tin anode slime: Preparation of CaSnO3 [J]. Minerals Engineering, 2019, 143: 105945. DOI: https://doi.org/10.1016/j.mineng.2019.105945.

    Article  Google Scholar 

  107. SU Zi-jian, ZHANG Yuan-bo, LIU Bing-bing, et al. Extraction and separation of tin from tin-bearing secondary resources: A review [J]. JOM, 2017, 69(11): 2364–2372. DOI: https://doi.org/10.1007/s11837-017-2509-1.

    Article  Google Scholar 

  108. ZENG Tao, LIU Chong-hao, LIU Qun-yi. Tin resources supply and consumption pattern and trend in the Belt and Road region [J]. China Mining Magazine, 2019, 28(8): 1–9. (in Chinese)

    Google Scholar 

  109. WEN Zong-guo, WAUGHRAY D. Recovery of key metals in the electronics industry in China: An opportunity in circularity [R]. World Economic Forum, 2018.

Download references

Author information

Authors and Affiliations

Authors

Contributions

LI Hao-dong provided investigation, formal analysis, visualization and writing-original draft preparation. YANG Cong-ren provided methodology, concept, writing-reviewing and editing, and data curation. TIAN Zu-yuan provided investigation, formal analysis, and resources. WU Chang-fa provided visualization and resources. QIN Wen-qing provided supervision, funding acquisition and writing-reviewing and editing.

Corresponding author

Correspondence to Wen-qing Qin  (覃文庆).

Additional information

Conflict of interest

LI Hao-dong, YANG Cong-ren, TIAN Zuyuan, WU Chang-fa, QIN Wen-qing declare that they have no conflict of interest.

Foundation item: Project(2018TP1002) supported by Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-containing Mineral Resources, China; Project supported by Co-Innovation Centre for Clean and Efficient Utilization of Strategic Metal Mineral Resources, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Hd., Yang, Cr., Tian, Zy. et al. Cassiterite beneficiation in China: A mini-review. J. Cent. South Univ. 30, 1–19 (2023). https://doi.org/10.1007/s11771-023-5245-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-023-5245-4

Key words

关键词

Navigation