Skip to main content
Log in

Understanding the leaching behavior of calcium molybdate through the construction of lgc—pH diagrams

钼酸钙浸出体系lgc-pH图的构建及其浸出行为分析

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

CaMoO4 is not only the main component of powellite, but also a key intermediate product in molybdenum metallurgy. The current leaching of CaMoO4 is mainly in experimental and industrial research, and seldom in theoretical analysis. In this research, lgc - pH diagrams for Ca-Mo-H2O, Ca-Mo-PO4-H2O, Ca-Mo-SiO4-H2O, Ca-Mo-CO3-H2O, Ca-Mo-Y(EDTA)-H2O, and Ca-Mo-F-H2O systems were constructed to predict the dissolution behavior of CaMoO4 in Na2EDTA, Na2SiO3, Na3PO4, Na2CO3, and NaF solutions. The diagrams suggest that CaMoO4 can be dissolved by the five types of solutions and the solid products, for example, Ca5(PO4)3OH, CaSiO3, Ca3Si2O7, CaCO3 and CaF2 were generated depending on the added reagent, while calcium combines with EDTA to form soluble CaY2− in Na2EDTA solution. The stability regions of CaMoO4 and solid products are dependent on the ion concentration and pH value. Meanwhile, the proper increase of reagent concentration and pH is beneficial for raising the solubility of molybdenum. The leaching experiments of synthetic CaMoO4 in various media indicate that CaMoO4 can be dissolved with a high leaching efficiency which was in accord with the thermodynamic analysis. This work presents the construction of thermodynamic diagrams that is useful in the analysis of the encountered phenomena in molybdenum hydrometallurgy and provides a thermodynamic approach for treating CaMoO4.

摘要

CaMoO4 是钼钨钙矿的主要成分,也是钼冶金过程中重要的中间产物。目前,钼酸钙的浸出主要集中于工业实践及实验研究,而浸出过程的热力学分析较少且不够系统。本文通过绘制Ca-Mo-H2O,Ca-Mo-PO4-H2O,Ca-Mo-SiO4-H2O,Ca-Mo-CO3-H2O,Ca-Mo-Y(EDTA)-H2O 和 Ca-Mo-F-H2O体系的lgc-pH图,研究了钼酸钙在常用浸出体系(Na2EDTA,Na2SiO3,Na3PO4,Na2CO3和NaF)中的分解行为。结果表明,CaMoO4及生成固体产物的稳定区依赖于pH 值和浸出剂的浓度,适当的增加pH值和浸出剂浓度能够增加CaMoO4的溶解,促进浸出反应的进行。基于热力学分析,研究了CaMoO4在不同体系中的浸出行为,其结果与热力学分析完全吻合。本文构建的热力学图能够用于解释钼湿法冶金过程遇到的相关问题,并能够为CaMoO4的处理提供热力学途径。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. LASHEEN T A, EL-AHMADY M E, HASSIB H B, et al. Molybdenum metallurgy review: Hydrometallurgical routes to recovery of molybdenum from ores and mineral raw materials [J]. Mineral Processing and Extractive Metallurgy Review, 2015, 36(3): 145–173. DOI: https://doi.org/10.1080/08827508.2013.868347.

    Article  Google Scholar 

  2. LYU Ying, LI Hong-gui. Utilize tungsten concentrates of high molybdenum rationally [J]. China Tungsten Industry, 2005(5): 15–16, 21. (in Chinese)

  3. LI Hong-gui. Production of high purity APT from scheelite and complex tungsten raw materials with a high Mo content [J]. Transactions of Nonferrous Metals Society of China, 2004, 14(2): 366–369.

    Article  Google Scholar 

  4. LI Yong-li, YANG Jin-hong, ZHAO Zhong-wei. Recovery of tungsten and molybdenum from low-grade scheelite [J]. JOM, 2017, 69(10): 1958–1962. DOI: https://doi.org/10.1007/s11837-017-2440-5.

    Article  Google Scholar 

  5. ZHANG Wen-juan, WANG Cheng-yan, MA Bao-zhong. Leaching kinetics of calcium molybdate with hydrochloric acid in presence of phosphoric acid [J]. Transactions of Nonferrous Metals Society of China, 2019, 29(4): 859–867. DOI: https://doi.org/10.1016/S1003-6326(19)64996-4.

    Article  Google Scholar 

  6. LIU De-bo, YANG Liu, DENG Xiang-wei, et al. Re-Os isotopic data for molybdenum from Hejiangkou tungsten and tin polymetallic deposit in Chenzhou and its geological significance [J]. Journal of Central South University, 2016, 23(5): 1071–1084. DOI: https://doi.org/10.1007/s11771-016-0357-8.

    Article  Google Scholar 

  7. SINGH S, CHETTY M K, JUNEJA J M, et al. Studies on the processing of a low grade molybdenite concentrate by lime roasting [J]. Minerals Engineering, 1988, 1(4): 337–342. DOI: https://doi.org/10.1016/0892-6875(88)90023-4.

    Article  Google Scholar 

  8. JUNEJA J M, SINGH S, BOSE D K. Investigations on the extraction of molybdenum and rhenium values from low grade molybdenite concentrate [J]. Hydrometallurgy, 1996, 41(2–3): 201–209. DOI: https://doi.org/10.1016/0304-386X(95)00056-M.

    Article  Google Scholar 

  9. WANG Ming-yu, WANG Xue-wen, LIU Wan-li. A novel technology of molybdenum extraction from low grade Ni-Mo ore [J]. Hydrometallurgy, 2009, 97(1–2): 126–130. DOI: https://doi.org/10.1016/j.hydromet.2008.12.004.

    Article  Google Scholar 

  10. BHAPPU R B, REYNOLDS D H, ROMAN R J. Molybdenum recovery from sulfide and oxide ores [J]. JOM, 1965, 17(11): 1199–1205. DOI: https://doi.org/10.1007/BF03378390.

    Article  Google Scholar 

  11. JIANG Kai-xi, WANG Yu-fang, ZOU Xiao-ping, et al. Extraction of molybdenum from molybdenite concentrates with hydrometallurgical processing [J]. JOM, 2012, 64(11): 1285–1289. DOI: https://doi.org/10.1007/s11837-012-0457-3.

    Article  Google Scholar 

  12. ZHANG Qi-xiu, ZHAO Qin-sheng. Tungsten and molybdenum metallurgy [M]. Beijing: Metallurgical Industry Press, 2007: 96. (in Chinese)

    Google Scholar 

  13. DOUGLAS D A, MENASHI J, RAPPAS A S. Process for recovering chromium, vanadium, molybdenum and tungsten values from a feed material: US4298581 [P]. 1981-11-03.

  14. LIN Luo, LIU Ke-jun, SHIBAYAMA A, et al. Recovery of tungsten and vanadium from tungsten alloy scrap [J]. Hydrometallurgy, 2004, 72(1–2): 1–8. DOI: https://doi.org/10.1016/S0304-386X(03)00121-X.

    Google Scholar 

  15. LI Zeng, CHU Yong-cheng. A literature review of the recovery of molybdenum and vanadium from spent hydrodesulphurisation catalysts, Part II: Separation and purification [J]. Hydrometallurgy, 2009, 98(1–2): 10–20. DOI: https://doi.org/10.1016/j.hydromet.2009.03.012.

    Google Scholar 

  16. SWINKELS P L J, van der WEIJDEN R D, AJAH A N, et al. Conceptual process design as a prerequisite for solving environmental problems: A case study of molybdenum removal and recovery from wastewater [J]. Minerals Engineering, 2004, 17(2): 205–215. DOI: https://doi.org/10.1016/j.mineng.2003.08.013.

    Article  Google Scholar 

  17. WANG Ming-shuang, WEI Chang, FAN Gang, et al. Molybdenum recovery from oxygen pressure water leaching residue of Ni - Mo ore [J]. Rare Metals, 2013, 32(2): 208–212. DOI: https://doi.org/10.1007/s12598-013-0026-0.

    Article  Google Scholar 

  18. NGUYEN T H, LEE M S. Development of a hydrometallurgical process for the recovery of calcium molybdate and cobalt oxalate powders from spent hydrodesulphurization (HDS) catalyst [J]. Journal of Cleaner Production, 2015, 90: 388–396. DOI: https://doi.org/10.1016/j.jclepro.2014.11.048.

    Article  Google Scholar 

  19. ILHAN S, KALPAKLI A O, KAHRUMAN C, et al. The use of Langmuir-Hinshelwood mechanism to explain the kinetics of calcium molybdate leaching in oxalic acid solution [J]. Hydrometallurgy, 2012, 127–128: 91–98. DOI: https://doi.org/10.1016/j.hydromet.2012.07.011.

    Article  Google Scholar 

  20. ZHANG Wen-juan, LI Jiang-tao, ZHAO Zhong-wei, et al. Recovery and separation of W and Mo from high-molybdenum synthetic scheelite in HCl solutions containing H2O2 [J]. Hydrometallurgy, 2015, 155: 1–5. DOI: https://doi.org/10.1016/j.hydromet.2015.03.020.

    Article  Google Scholar 

  21. PAN Mao-sen, ZHU Yun. Experimental study on leaching molybdenum at high-pressure from calcium molybdate [J]. China Molybdenum Industry, 2005, 29(6): 19–21. DOI: https://doi.org/10.13384/j.cnki.cmi.1006-2602.2005.06.005. (in Chinese)

    Google Scholar 

  22. ZHANG Wen-juan, YANG Jin-hong, ZHAO Zhong-wei, et al. Coordination leaching of tungsten from scheelite concentrate with phosphorus in nitric acid [J]. Journal of Central South University, 2016, 23(6): 1312–1317. DOI: https://doi.org/10.1007/s11771-016-3181-2.

    Article  Google Scholar 

  23. ZHANG Wen-juan, WANG Cheng-yan, MA Bao-zhong. Leaching kinetics of calcium molybdate with hydrochloric acid in presence of phosphoric acid [J]. Transactions of Nonferrous Metals Society of China, 2019, 29(4): 859–867. DOI: https://doi.org/10.1016/S1003-6326(19)64996-4.

    Article  Google Scholar 

  24. ZHANG Du-chao, YANG Tian-zu, LIU Wei-feng, et al. Pressure leaching of bismuth sulfide concentrate containing molybdenum and tungsten in alkaline solution [J]. Journal of Central South University, 2012, 19(12): 3390–3395. DOI: https://doi.org/10.1007/s11771-012-1419-1.

    Article  Google Scholar 

  25. ZHAO Zhong-wei, LI Jiang-tao, WANG Shi-bo, et al. Extracting tungsten from scheelite concentrate with caustic soda by autoclaving process [J]. Hydrometallurgy, 2011, 108(1–2): 152–156. DOI: https://doi.org/10.1016/j.hydromet.2011.03.004.

    Article  Google Scholar 

  26. MARTINS J P. Kinetics of soda ash leaching of low-grade scheelite concentrates [J]. Hydrometallurgy, 1996, 42(2): 221–236. DOI: https://doi.org/10.1016/0304-386X(95)00099-3.

    Article  Google Scholar 

  27. KONISHI Y, KATADA H, ASAI S. Leaching kinetics of tungsten from low-grade scheelite ore in aqueous Na4EDTA solutions [J]. Hydrometallurgy, 1990, 23(2–3): 141–152. DOI: https://doi.org/10.1016/0304-386X(90)90001-I.

    Article  Google Scholar 

  28. YANG Jin-hong, HE Li-hua, LIU Xu-heng, et al. Comparative kinetic analysis of conventional and ultrasound-assisted leaching of scheelite by sodium carbonate [J]. Transactions of Nonferrous Metals Society of China, 2018, 28(4): 775–782. DOI: https://doi.org/10.1016/S1003-6326(18)64710-7.

    Article  Google Scholar 

  29. OSSEO-ASARE K. Solution chemistry of tungsten leaching systems [J]. Metallurgical Transactions B, 1982, 13(4): 555–564. DOI: https://doi.org/10.1007/BF02650012.

    Article  Google Scholar 

  30. SPEIGHT J G. Lange’s handbook of chemistry [M]. 16th Edition New York: McGraw-Hill, 2005.

    Google Scholar 

  31. CASASSAS E. Handbook of chemical equilibria in analytical chemistry [J]. TrAC Trends in Analytical Chemistry, 1985, 4(10): 20–21. DOI: https://doi.org/10.1016/0165-9936(85)87048-5.

    Article  Google Scholar 

  32. CHUGHTAI A, MARSHALL R, NANCOLLAS G H. Complexes in calcium phosphate solutions [J]. The Journal of Physical Chemistry, 1968, 72(1): 208–211. DOI: https://doi.org/10.1021/j100847a039.

    Article  Google Scholar 

  33. ZHAO Zhong-wei. Theory and application of tungsten metallurgy [M]. Beijing: Tsinghua University Press, 2013: 77–80. (in Chinese)

    Google Scholar 

  34. LI Hong-gui, YIN Gui, SUN Pei-mei, et al. Behabiviours of accompanying molybdenum and tin minerals in the alkaline decomposition of tungsten concentrate [M]//Fundamental Theory and New Technology of the Alkaline Decomposition of Tungsten Minerals. Changsha: Central South University Press, 1997: 72. (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

ZHANG Wen-juan and WANG Cheng-yan provided the concept and edited the draft of the manuscript. CHE Jian-yong conducted the literature review. ZHU Ji-nian and CHEN Guo-ju provided the funding item. XIA Liu and CHEN Jun established the models and analyzed the calculated results. All authors replied to reviewers’ comments and revised the final version.

Corresponding author

Correspondence to Cheng-yan Wang  (王成彦).

Additional information

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Foundation item: Project(JKY2019-10) supported by the State Key Laboratory of Nickel and Cobalt Resources Comprehensive Utilization, China; Project(51804029) supported by the National Natural Science Foundation of China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Wj., Che, Jy., Zhu, Jn. et al. Understanding the leaching behavior of calcium molybdate through the construction of lgc—pH diagrams. J. Cent. South Univ. 30, 465–476 (2023). https://doi.org/10.1007/s11771-023-5240-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-023-5240-9

Key words

关键词

Navigation