Skip to main content
Log in

In situ self-nucleophilic synthesis of nano-Li4Ti5O12/reduced graphite oxide composite with mesopore-oriented porous structure for high-rate lithium ion batteries

基于亲核活性机理合成具有优良高倍率性能的纳米Li4Ti5O12/还原氧化石墨介孔复合负极材料

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

It is the core to improve the electron/ion transfer features of Li4Ti5O12 for achieving high-rate anode in lithium ion batteries. By directly using graphite oxide powder, nano-Li4Ti5O12/reduced graphite oxide composite with mesopore-oriented porosity is prepared through one-pot facile ball-milling method in this work. Synthesis mechanism underlying the self-nucleophilic effect of oxygen-containing functional groups in graphite oxide is substantiated. Reactants can intercalate into graphite oxide bulk and in-situ generate nanoparticles. Subsequently, graphite oxide with nanoparticles generated inside can obtain a mesopore-oriented porous structure under ball-milling. Furthermore, the synergistic effects of Li4Ti5O12 nanoparticles and mesopore-oriented porosity strengthen composites with rapid Li+ diffusion and electron conductive frameworks. The obtained optimal LTO/GO-1.75 composite displays excellent high-rate capability (136 mA·h/g at 7000 mA/g) and good cycling stability (a capacity retention of 72% after 1000 cycles at 7000 mA/g). Additionally, the reactants concentration in this demonstrated strategy is as high as 30 wt%–40 wt%, which is over 6 times that of traditional methods with GO suspensions. It means that the strategy can significantly increase the yield, showing big potential for large-scale production.

摘要

改善Li4Ti5O12 电子和离子的传导性能是提高其倍率性能的关键。本文利用氧化石墨的亲核反应活性,采用简易的一锅法制备了具有优良倍率性能的纳米Li4Ti5O12/还原氧化石墨介孔复合材料。理论计算和实验结果证实氧化石墨中含氧官能团具有强亲核反应活性,是获得纳米Li4Ti5O12颗粒和介孔结构的关键,揭示了基于亲核活性的材料合成机理。在复合材料制备过程中,反应物嵌入氧化石墨本体,并在层间原位形成Li4Ti5O12前驱体纳米颗粒。所形成的前驱体纳米颗粒会增大氧化石墨层间距,并进一步减弱其层间作用力,导致氧化石墨在随后的球磨作用下被剥离为介孔结构。经高温烧结,成功制备纳米Li4Ti5O12/还原氧化石墨介孔复合材料。纳米颗粒与介孔结构的协同效应使得复合材料具有高Li+扩散速率和高电子电导率,进而提高复合材料倍率性能。其中,最佳配比的LTO/GO-1.75 复合材料具有优异的高倍率能力(7000 mA/g 下的可逆比容量达136 mA·h/g)和良好的循环稳定性(7000 mA/g 下循环1000 次后容量保留率为72%)。不仅如此,该合成方法中的反应物浓度高达30 wt%∼40 wt%,是传统氧化石墨烯悬浮液制备方法的6 倍以上,意味着本合成方法具有较高的复合材料产率,具有实用化生产的潜力。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. TOMASZEWSKA A, CHU Zheng-yu, FENG Xu-ning, et al. Lithium-ion battery fast charging: A review [J]. eTransportation, 2019, 1: 100011. DOI: https://doi.org/10.1016/j.etran.2019.100011.

    Article  Google Scholar 

  2. LIU Ya-yuan, ZHU Yang-ying, CUI Yi. Challenges and opportunities towards fast-charging battery materials [J]. Nature Energy, 2019, 4(7): 540–550. DOI: https://doi.org/10.1038/s41560-019-0405-3.

    Article  Google Scholar 

  3. LI You-jie, LI Rui-yi, YANG Yong-qiang, et al. Lithium titanate anode for high-performance lithium-ion batteries using octadecylamine and folic acid-functionalized graphene oxide for fabrication of ultrathin lithium titanate nanoflakes and modification of binder [J]. New Journal of Chemistry, 2018, 42(18): 15097–15104. DOI: https://doi.org/10.1039/c8nj03138j.

    Article  Google Scholar 

  4. ZHENG Lu-yao, WANG Xiao-yan, XIA Yong-gao, et al. Scalable in situ synthesis of Li4Ti5O12/carbon nanohybrid with supersmall Li4Ti5O12 nanoparticles homogeneously embedded in carbon matrix [J]. ACS Applied Materials & Interfaces, 2018, 10(3): 2591–2602. DOI: https://doi.org/10.1021/acsami.7b16578.

    Article  Google Scholar 

  5. GOODENOUGH J B, KIM Y. Challenges for rechargeable Li batteries [J]. Chemistry of Materials, 2010, 22(3): 587–603. DOI: https://doi.org/10.1021/cm901452z.

    Article  Google Scholar 

  6. WANG Chao, WANG Shuan, HE Yan-bing, et al. Combining fast Li-ion battery cycling with large volumetric energy density: Grain boundary induced high electronic and ionic conductivity in Li4Ti5O12 spheres of densely packed nanocrystallites [J]. Chemistry of Materials, 2015, 27(16): 5647–5656. DOI: https://doi.org/10.1021/acs.chemmater.5b02027.

    Article  Google Scholar 

  7. WANG Shuai, ZHANG Hui-juan, ZHANG Di, et al. Vertically oriented growth of MoO3 nanosheets on graphene for superior lithium storage [J]. Journal of Materials Chemistry A, 2018, 6(2): 672–679. DOI: https://doi.org/10.1039/c7ta09158c.

    Article  Google Scholar 

  8. LI Shao-hui, CHEN Jing-wei, GONG Xue-fei, et al. Holey graphene-wrapped porous TiNb24O62 microparticles as highperformance intercalation pseudocapacitive anode materials for lithium-ion capacitors [J]. NPG Asia Materials, 2018, 10(5): 406–416. DOI: https://doi.org/10.1038/s41427-018-0042-5.

    Article  Google Scholar 

  9. XU Jian-tie, LIN Yi, CONNELL J W, et al. Nitrogen-doped holey graphene as an anode for lithium-ion batteries with high volumetric energy density and long cycle life [J]. Small, 2015, 11(46): 6179–6185. DOI: https://doi.org/10.1002/smll.201501848.

    Article  Google Scholar 

  10. KOVALENKO I, ZDYRKO B, MAGASINSKI A, et al. A major constituent of brown algae for use in high-capacity Li-ion batteries [J]. Science, 2011, 334(6052): 75–79. DOI: https://doi.org/10.1126/science.1209150.

    Article  Google Scholar 

  11. SMITH P F, TAKEUCHI K J, MARSCHILOK A C, et al. Holy grails in chemistry: Investigating and understanding fast electron/cation coupled transport within inorganic ionic matrices [J]. Accounts of Chemical Research, 2017, 50(3): 544–548. DOI: https://doi.org/10.1021/acs.accounts.6b00540.

    Article  Google Scholar 

  12. SHEN Lai-fa, YUAN Chang-zhou, LUO Hong-jun, et al. In situ synthesis of high-loading Li4Ti5O12-graphene hybrid nanostructures for high rate lithium ion batteries [J]. Nanoscale, 2011, 3(2): 572–574. DOI: https://doi.org/10.1039/c0nr00639d.

    Article  Google Scholar 

  13. ZHANG Wen-li, LI Jin-feng, GUAN Yi-biao, et al. Nano-Li4Ti5O12 with high rate performance synthesized by a glycerol assisted hydrothermal method [J]. Journal of Power Sources, 2013, 243: 661–667. DOI: https://doi.org/10.1016/j.jpowsour.2013.06.010.

    Article  Google Scholar 

  14. XU Gao-jie, HAN Peng-xian, DONG Shan-mu, et al. Li4Ti5O12-based energy conversion and storage systems: Status and prospects [J]. Coordination Chemistry Reviews, 2017, 343: 139–184. DOI: https://doi.org/10.1016/j.ccr.2017.05.006.

    Article  Google Scholar 

  15. ZHAO Bo-te, RAN Ran, LIU Mei-lin, et al. A comprehensive review of Li4Ti5O12-based electrodes for lithium-ion batteries: The latest advancements and future perspectives [J]. Materials Science and Engineering R: Reports, 2015, 98: 1–71. DOI: https://doi.org/10.1016/j.mser.2015.10.001.

    Article  Google Scholar 

  16. LIU Jun, WEI Ai-xiang, CHEN Ming-hua, et al. Rational synthesis of Li4Ti5O12/N-C nanotube arrays as advanced highrate electrodes for lithium-ion batteries [J]. Journal of Materials Chemistry A, 2018, 6(9): 3857–3863. DOI: https://doi.org/10.1039/c8ta00312b.

    Article  Google Scholar 

  17. ZHUANG Hui, BAO Yu-bo, NIE Ya-ke, et al. Synergistic effect of composite carbon source and simple pre-calcining process on significantly enhanced electrochemical performance of porous LiFe0.5Mn0.5PO4/C agglomerations [J]. Electrochimica Acta, 2019, 314: 102–114. DOI: https://doi.org/10.1016/j.electacta.2019.05.066.

    Article  Google Scholar 

  18. TANG Lin-kai, HE Yan-bing, WANG Chao, et al. High-density microporous Li4Ti5O12 microbars with superior rate performance for lithium-ion batteries [J]. Advanced Science, 2017, 4(5): 1600311. DOI: https://doi.org/10.1002/advs.201600311.

    Article  Google Scholar 

  19. HAN Cui-ping, HE Yan-bing, LIU Ming, et al. A review of gassing behavior in Li4Ti5O12-based lithium ion batteries [J]. Journal of Materials Chemistry A, 2017, 5(14): 6368–6381. DOI: https://doi.org/10.1039/c7ta00303j.

    Article  Google Scholar 

  20. YUAN Xu, YUE Wen-bo, ZHANG Jin. Electrochemically exfoliated graphene as high-performance catalyst support to promote electrocatalytic oxidation of methanol on Pt catalysts [J]. Journal of Central South University, 2020, 27(9): 2515–2529. DOI: https://doi.org/10.1007/s11771-020-4477-9.

    Article  Google Scholar 

  21. ZHOU Xiao-zhong, LU He-jie, TANG Xing-chang, et al. Facile synthesis of Sb@Sb2O3/reduced graphene oxide composite with superior lithium-storage performance [J]. Journal of Central South University, 2019, 26(6): 1493–1502. DOI: https://doi.org/10.1007/s11771-019-4105-8.

    Article  Google Scholar 

  22. ZHANG Yue, OUYANG Yan, LIU Li, et al. Synthesis and characterization of Na0.44MnO2 nanorods/graphene composite as cathode materials for sodium-ion batteries [J]. Journal of Central South University, 2019, 26(6): 1510–1520. DOI: https://doi.org/10.1007/s11771-019-4107-6.

    Article  Google Scholar 

  23. ZHU Kun-xu, GAO Han-yang, HU Guo-xin. A flexible mesoporous Li4Ti5O12-rGO nanocomposite film as freestanding anode for high rate lithium ion batteries [J]. Journal of Power Sources, 2018, 375: 59–67. DOI: https://doi.org/10.1016/j.jpowsour.2017.11.053.

    Article  Google Scholar 

  24. MENG Tao, YI Fen-yun, CHENG Hong-hong, et al. Preparation of lithium titanate/reduced graphene oxide composites with three-dimensional “fishnet-like” conductive structure via a gas-foaming method for high-rate lithium-ion batteries [J]. ACS Applied Materials & Interfaces, 2017, 9(49): 42883–42892. DOI: https://doi.org/10.1021/acsami.7b15525.

    Article  Google Scholar 

  25. KIM H K, BAK S M, KIM K B. Li4Ti5O12/reduced graphite oxide nano-hybrid material for high rate lithium-ion batteries [J]. Electrochemistry Communications, 2010, 12(12): 1768–1771. DOI: https://doi.org/10.1016/j.elecom.2010.10.018.

    Article  Google Scholar 

  26. LI Zheng-jie, KONG De-bin, ZHOU Guang-min, et al. Twin-functional graphene oxide: Compacting with Fe2O3 into a high volumetric capacity anode for lithium ion battery [J]. Energy Storage Materials, 2017, 6: 98–103. DOI: https://doi.org/10.1016/j.ensm.2016.09.005.

    Article  Google Scholar 

  27. MA Hong-yun, KONG De-bin, XU Yue, et al. Disassembly-reassembly approach to RuO2/graphene composites for ultrahigh volumetric capacitance supercapacitor [J]. Small, 2017, 13(30): 1701026. DOI: https://doi.org/10.1002/smll.201701026.

    Article  Google Scholar 

  28. XIANG Yu, ZHAO Peng-cheng, JIN Zhao-qing, et al. Three-dimensional and mesopore-oriented graphene conductive framework anchored with nano-Li4Ti5O12 particles as an ultrahigh rate anode for lithium-ion batteries [J]. ACS Applied Materials & Interfaces, 2018, 10: 42258–42267. DOI: https://doi.org/10.1021/acsami.8b14774.

    Article  Google Scholar 

  29. HAN Jun-wei, KONG De-bin, LV Wei, et al. Caging tin oxide in three-dimensional graphene networks for superior volumetric lithium storage [J]. Nature Communications, 2018, 9: 402–409. DOI: https://doi.org/10.1038/s41467-017-02808-2.

    Article  Google Scholar 

  30. NAOI K, NAOI W, AOYAGI S, et al. New generation “nanohybrid supercapacitor” [J]. Accounts of Chemical Research, 2013, 46(5): 1075–1083. DOI: https://doi.org/10.1021/ar200308h.

    Article  Google Scholar 

  31. MAO Shun, HUANG Xing-kang, CHANG Jing-bo, et al. One-step, continuous synthesis of a spherical Li4Ti5O12/graphene composite as an ultra-long cycle life lithium-ion battery anode [J]. NPG Asia Materials, 2015, 7(11): e224. DOI: https://doi.org/10.1038/am.2015.120.

    Article  Google Scholar 

  32. ZHANG Chen, LV Wei, XIE Xiao-ying, et al. Towards low temperature thermal exfoliation of graphite oxide for graphene production [J]. Carbon, 2013, 62: 11–24. DOI: https://doi.org/10.1016/j.carbon.2013.05.033.

    Article  Google Scholar 

  33. DONG Liu-bing, XU Cheng-jun, LI Yang, et al. Simultaneous production of high-performance flexible textile electrodes and fiber electrodes for wearable energy storage [J]. Advanced Materials, 2016, 28(8): 1675–1681. DOI: https://doi.org/10.1002/adma.201504747.

    Article  Google Scholar 

  34. WU Hui, LU Wei, SHAO Jiao-jing, et al. pH-dependent size, surface chemistry and electrochemical properties of graphene oxide [J]. New Carbon Materials, 2013, 28(5): 327–335. DOI: https://doi.org/10.1016/S1872-5805(13)60085-2.

    Article  Google Scholar 

  35. HUMMERS W S, OFFEMAN R E. Preparation of graphitic oxide [J]. Journal of the American Chemical Society, 1958, 80(6): 1339. DOI: https://doi.org/10.1021/ja01539a017.

    Article  Google Scholar 

  36. ROURKE J P, PANDEY P A, MOORE J J, et al. The real graphene oxide revealed: Stripping the oxidative debris from the graphene-like sheets [J]. Angewandte Chemie International Edition, 2011, 50(14): 3173–3177. DOI: https://doi.org/10.1002/anie.201007520.

    Article  Google Scholar 

  37. FERRARI A C, BASKO D M. Raman spectroscopy as a versatile tool for studying the properties of graphene [J]. Nature Nanotechnology, 2013, 8(4): 235–246. DOI: https://doi.org/10.1038/nnano.2013.46.

    Article  Google Scholar 

  38. KRESSE G, HAFNER J. Ab-initio molecular-dynamics simulation of the liquid-metal amorphous-Semiconductor transition in germanium [J]. Physical Review B-Condensed Matter, 1994, 49(20): 14251–14269.

    Article  Google Scholar 

  39. BLOCHL P. Projector augmented-wave method [J]. Physical Review B–Condensed Matter, 1994, 50(24): 17953–17979. DOI: https://doi.org/10.1103/PhysRevB.50.17953.

    Article  Google Scholar 

  40. KRESSE G, HAFNER J. Ab-initio molecular-dynamics simulation of the liquid-metal amorphous-semiconductor transition in germanium [J]. Physical Review B-Condensed Matter, 1994, 49: 14251–14269. DOI: https://doi.org/10.1103/PhysRevB.49.14251.

    Article  Google Scholar 

  41. KRESSE G, FURTHMÜLLER J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set [J]. Computational Materials Science, 1996, 6(1): 15–50. DOI: https://doi.org/10.1016/0927-0256(96)00008-0.

    Article  Google Scholar 

  42. MONKHORST H, PACK D. Special points for brillouin-zone integrations [J]. Physical Review B, 1976, 13: 5188–5192. DOI: https://doi.org/10.1103/PhysRevB.13.5188.

    Article  MathSciNet  Google Scholar 

  43. FERRARI A C, BASKO D M. Raman spectroscopy as a versatile tool for studying the properties of graphene [J]. Nature Nanotechnology, 2013, 8: 235–246. DOI: https://doi.org/10.1038/nnano.2013.46.

    Article  Google Scholar 

  44. SHEN Lai-fa, YUAN Chang-zhou, LUO Hong-jun, et al. In situ synthesis of high-loading Li4Ti5O12-graphene hybrid nanostructures for high rate lithium ion batteries [J]. Nanoscale, 2011, 3: 572–574. DOI: https://doi.org/10.1039/C0NR00639D.

    Article  Google Scholar 

  45. WANG Dong-dong, SHAN Zhong-qiang, LIU Xiao-yan, et al. High-rate Li4Ti5O12/porous activated graphene nanoplatelets composites using LiOH both as lithium source and activating agent [J]. Electrochimica Acta, 2018, 262(1): 9–17. DOI: https://doi.org/10.1016/j.electacta.2017.12.185

    Google Scholar 

  46. LI You-jie, LI Rui-yi, YANG Yong-qiang, et al. Lithium titanate anode for high-performance lithium-ion batteries using octadecylamine and folic acid-functionalized graphene oxide for fabrication of ultrathin lithium titanate nanoflakes and modification of binder [J]. New Journal of Chemistry, 2018, 42: 15097–15104. DOI: https://doi.org/10.1039/C8NJ03138J.

    Article  Google Scholar 

  47. YAN Hong, YAO Wei, FAN Run-ze, et al. Mesoporous hierarchical structure of Li4Ti5O12/graphene with high electrochemical performance in lithium-ion batteries [J]. ACS Sustainable Chemistry Engineering, 2018, 6(9): 11360–11366. DOI: https://doi.org/10.1021/acssuschemeng.8b01211.

    Article  Google Scholar 

  48. ZHENG Lu-yao, WANG Xiao-yan, XIA Yong-gao, et al. Scalable in situ synthesis of Li4Ti5O12/carbon nanohybrid with supersmall Li4Ti5O12 nanoparticles homogeneously embedded in carbon matrix [J]. ACS Applied Materials & Interfaces, 2018, 10(3): 2591–2602. DOI: https://doi.org/10.1021/acsami.7b16578.

    Article  Google Scholar 

  49. FANG Wei, ZUO Peng-jian, MA Yu-lin, et al. Facile preparation of Li4Ti5O12/AB/MWCNTs composite with highrate performance for lithium ion battery [J]. Electrochimica Acta, 2013, 94(1): 294–299. DOI: https://doi.org/10.1016/j.electacta.2013.01.132.

    Article  Google Scholar 

  50. LI Na, LIANG Jian-wen, WEI Deng-hu, et al. Solvothermal synthesis of micro-/nanoscale Cu/Li4Ti5O12 composites for high rate Li-ion batteries [J]. Electrochimica Acta, 2014, 123(20): 346–352. DOI: https://doi.org/10.1016/j.electacta.2014.01.063.

    Article  Google Scholar 

  51. WANG Jun-jun, DONG Sheng-yang, LI Hong-sen, et al. Facile synthesis of layered Li4Ti5O12-Ti3C2Tx (MXene) composite for high-performance lithium ion battery [J]. Journal of Electroanalytical Chemistry, 2018, 810(1): 27–33. DOI: https://doi.org/10.1016/j.jelechem.2017.12.079.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

XIANG Yu provided the concept and edited the draft of manuscript. ZHANG Ting-ting supplied the theoretical calculations. PAN Feng-ling conducted the literature review and wrote the first draft of the manuscript. ZHANG Wen-feng analyzed the measured data. MING Hai and CAO Gao-ping edited the draft of manuscript. All authors replied to reviewers’ comments and revised the final version.

Corresponding authors

Correspondence to Ting-ting Zhang  (张婷婷) or Yu Xiang  (向宇).

Additional information

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Foundation item: Project(21875283) supported by the the National Natural Science Foundation of China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, Fl., Ming, H., Cao, Gp. et al. In situ self-nucleophilic synthesis of nano-Li4Ti5O12/reduced graphite oxide composite with mesopore-oriented porous structure for high-rate lithium ion batteries. J. Cent. South Univ. 29, 2911–2929 (2022). https://doi.org/10.1007/s11771-022-5143-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-022-5143-1

Key words

关键词

Navigation