Skip to main content
Log in

Spatiotemporal evolution of high-aspect-ratio filamentary trace in sapphire of picosecond pulse burst-mode for laser lift-off

皮秒脉冲序列模式在蓝宝石中高深径比成丝线迹的时空演化

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The influence of the picosecond (ps) pulsed burst with a nanosecond scale of temporal separation (50 ns) on filamentary traces in sapphire substrate is investigated. The spatiotemporal evolution of the filamentary plasma string induced by sub-pulses of the burst-mode is revealed according to the analysis of the instantaneous photoluminescence images. Due to the presence of residual plasma, the energy loss of sub-pulse during the balancing of self-focusing effect is reduced, and thus refreshes the plasma via refocusing. The refreshed plasma peak generated by the subsequent subpulse appears at relatively low density positions in the formed filamentary plasma string, which results in more uniform densities and less spatial overlap among the plasma peaks. The continuity and uniformity of the filamentary trace in sapphire are enhanced by the burst-mode. Besides, the burst filamentary propagation can also remain effective when the sub-pulse energy is below the self-focusing threshold. Based on this uniform and precise energy propagation mode, the feasibility of its use for the laser lift-off (LLO) process is verified.

摘要

研究了蓝宝石衬底中皮秒脉冲序列诱发等离子体串的时空演变。残余等离子体的存在,降低了子脉冲在自聚焦效应平衡过程的能量损失,使得后续子脉冲可以通过再聚焦刷新等离子体。刷新后的等离子体峰移动至丝状等离子体串密度相对较低的位置,有效地降低了等离子体峰之间的空间重叠并匀化了等离子体串的密度,最终使得丝状线迹的连续性和均匀性得到增强。基于这种均匀而精确的能量传播模式,验证了其用于激光剥离工艺的可行性。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. BIAN Jing, ZHOU L, WAN Xiao-dong, et al. Laser transfer, printing, and assembly techniques for flexible electronics [J]. Advanced Electronic Materials, 2019, 5(7): 1800900. DOI: https://doi.org/10.1002/aelm.201800900.

    Article  Google Scholar 

  2. WASISTO H S, PRADES J D, GÜLINK J, et al. Beyond solid-state lighting: Miniaturization, hybrid integration, and applications of GaN nano- and micro-LEDs [J]. Applied Physics Reviews, 2019, 6(4): 041315. DOI: https://doi.org/10.1063/1.5096322.

    Article  Google Scholar 

  3. PARK K I, SON J H, HWANG G T, et al. Highly-efficient, flexible piezoelectric PZT thin film nanogenerator on plastic substrates [J]. Advanced Materials, 2014, 26(16): 2514–2520. DOI: https://doi.org/10.1002/adma.201305659.

    Article  Google Scholar 

  4. SUN Wei-gao, JI Ling-fei, LIN Zhen-yuan, et al. Low-energy UV ultrafast laser controlled lift-off for high-quality flexible GaN-based device [J]. Advanced Functional Materials, 2022, 32(8): 2111920. DOI: https://doi.org/10.1002/adfm.202111920.

    Article  Google Scholar 

  5. HORNG R H, CHIANG C C, HSIAO H Y, et al. Improved thermal management of GaN/sapphire light-emitting diodes embedded in reflective heat spreaders [J]. Applied Physics Letters, 2008, 93(11): 111907. DOI: https://doi.org/10.1063/1.2983740.

    Article  Google Scholar 

  6. KIM Y, PARK S, KIM B K, et al. Laser lift-off of polyimide thin-film from glass carrier using DPSS laser pulses of top-hat square profiles [J]. Optics & Laser Technology, 2021, 142: 107245. DOI: https://doi.org/10.1016/j.optlastec.2021.107245.

    Article  Google Scholar 

  7. SERRA P, PIQUÉ A. Laser-induced forward transfer: Fundamentals and applications [J]. Advanced Materials Technologies, 2019, 4(1): 1800099. DOI: https://doi.org/10.1002/admt.201800099.

    Article  Google Scholar 

  8. BIAN J, CHEN F, YANG B, et al. Laser-induced interfacial spallation for controllable and versatile delamination of flexible electronics [J]. ACS Applied Materials & Interfaces, 2020, 48(12): 54230–54240. DOI: https://doi.org/10.1021/acsami.0c18951.

    Article  Google Scholar 

  9. HUNEUS F, LINGEL C, ZELLER T, et al. Compact line focus system for laser-based debonding of flexible electronic components [C]//SPIE LASE. Proc SPIE 10906, Laser-Based Micro- and Nanoprocessing XIII. San Francisco, California, USA. 2019, 10906: 42–48. DOI: https://doi.org/10.1117/12.2513763.

  10. JIA Yue-chen, WANG Shi-xiang, CHEN Feng. Femtosecond laser direct writing of flexibly configured waveguide geometries in optical crystals: Fabrication and application [J]. Opto-Electronic Advances, 2020, 3(10): 190042. DOI: https://doi.org/10.29026/oea.2020.190042.

    Article  Google Scholar 

  11. COUAIRON A, MYSYROWICZ A. Femtosecond filamentation in transparent media [J]. Physics Reports, 2007, 441(2–4): 47–189. DOI: https://doi.org/10.1016/j.physrep.2006.12.005.

    Article  Google Scholar 

  12. AMINA, JI Ling-fei, YAN Tian-yang, et al. Ionization behavior and dynamics of picosecond laser filamentation in sapphire [J]. Opto-Electronic Advances, 2019, 2(6): 19000301–19000307. DOI: https://doi.org/10.29026/oea.2019.190003.

    Article  Google Scholar 

  13. BERGÉ L, SKUPIN S, NUTER R, et al. Ultrashort filaments of light in weakly ionized, optically transparent media [J]. Reports on Progress in Physics, 2007, 70(10): 1633–1713. DOI: https://doi.org/10.1088/0034-4885/70/10/r03.

    Article  Google Scholar 

  14. YAN Tian-yang, JI Ling-fei, SUN Wei-gao. Characteristics and formation mechanism of filamentary plasma string induced by single picosecond laser pulse in sapphire [J]. Applied Physics A, 2021, 128(1): 1–8. DOI: https://doi.org/10.1007/s00339-021-05147-8.

    Google Scholar 

  15. LIU Jiang-wei, ZENG Ping-wang, RAO Zheng-hua, et al. Transport phenomena and keyhole evolution process in laser welding of stainless steel [J]. Journal of Central South University, 2019, 26(8): 2088–2099. DOI: https://doi.org/10.1007/s11771-019-4156-x.

    Article  Google Scholar 

  16. FINNEY L A, LIN J, SKRODZKI P J, et al. Filament-induced breakdown spectroscopy signal enhancement using optical wavefront control [J]. Optics Communications, 2021, 490: 126902. DOI: https://doi.org/10.1016/j.optcom.2021.126902.

    Article  Google Scholar 

  17. MAYERHOFER R. Ultrashort-pulsed laser material processing with high repetition rate burst pulses [C]//SPIE LASE. Proc SPIE 10091, Laser Applications in Microelectronic and Optoelectronic Manufacturing (LAMOM) XXII. San Francisco, California, USA. 2017, 10091: 192–201. DOI: https://doi.org/10.1117/12.2255184.

  18. LI Jian-zhao, ERTORER E, HERMAN P R. Ultrafast laser burst-train filamentation for non-contact scribing of optical glasses [J]. Optics Express, 2019, 27(18): 25078–25090. DOI: https://doi.org/10.1364/OE.27.025078.

    Article  Google Scholar 

  19. BRODEUR A, CHIN S L. Ultrafast white-light continuum generation and self-focusing in transparent condensed media [J]. Journal of the Optical Society of America B, 1999, 16(4): 637. DOI: https://doi.org/10.1364/josab.16.000637.

    Article  Google Scholar 

  20. HOUARD A, JUKNA V, POINT G, et al. Study of filamentation with a high power high repetition rate ps laser at 1.03 urn [J]. Optics Express, 2016, 24(7): 7437–7448. DOI: https://doi.org/10.1364/OE.24.007437.

    Article  Google Scholar 

  21. SKUPIN S, NUTER R, BERGÉ L. Optical femtosecond filaments in condensed media [J]. Physical Review A, 2006, 74(4): 043813. DOI: https://doi.org/10.1103/physreva.74.043813.

    Article  Google Scholar 

  22. FEIT M D, FLECK J A. Effect of refraction on spot-size dependence of laser-induced breakdown [J]. Applied Physics Letters, 1974, 24(4): 169–172. DOI: https://doi.org/10.1063/1.1655139.

    Article  Google Scholar 

  23. COLLINO F, JOLY P, MILLOT F. Fictitious domain method for unsteady problems [J]. Journal of Computational Physics, 1997, 138(2): 907–938. DOI: https://doi.org/10.1006/jcph.1997.5849.

    Article  MathSciNet  MATH  Google Scholar 

  24. LEE K T, LEE Y C, TU Sheng-han, et al. Mechanism underlying damage induced in gallium nitride epilayer during laser lift-off process [J]. Japanese Journal of Applied Physics, 2008, 47(2): 930–932. DOI: https://doi.org/10.1143/jjap.47.930.

    Article  Google Scholar 

Download references

Funding

Project(51975017) supported by the National Natural Science Foundation of China; Project(KZ202110005012) supported by the Scientific Research Project of Beijing Educational Committee, China; Project(2018YFB1107500) supported by the National Key R&D Program of China

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling-fei Ji  (季凌飞).

Additional information

Contributors

JI Ling-fei developed the overarching research goals and reviewed the writing of the final manuscript. SUN Wei-gao conducted the literature review and wrote the manuscript. YAN Tian-yang validated the proposed method with practical experiments and edited the manuscript. WANG Yu-heng provided numerical simulations to examine and edited the manuscript.

Conflict of interest

SUN Wei-gao, YAN Tian-yang, WANG Yu-heng, and JI Ling-fei declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Wg., Yan, Ty., Wang, Yh. et al. Spatiotemporal evolution of high-aspect-ratio filamentary trace in sapphire of picosecond pulse burst-mode for laser lift-off. J. Cent. South Univ. 29, 3304–3311 (2022). https://doi.org/10.1007/s11771-022-5141-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-022-5141-3

Key words

关键词

Navigation