Skip to main content
Log in

Characteristics and formation mechanism of filamentary plasma string induced by single picosecond laser pulse in sapphire

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Characteristics and formation mechanism of filamentary plasma string induced by single picosecond laser pulse in sapphire are studied experimentally and numerically. Relative brightness and spatial distribution of the filamentary plasma string are characterized by time-resolved luminescence images. The whole filamentary plasma string is composed of a leading plasma string with stronger brightness and a tailing plasma string with weaker brightness. The numerical analysis shows that the different characteristics of filamentary plasma string are related to the two types of spatiotemporal evolution stages. The pivotal role of avalanche ionization for different spatiotemporal evolution stages is revealed. The filamentary plasma string induced by single pulse has a guiding significance for the subsequent pulse nonlinear propagation and the material modification; all the above provides basic information for the multi-pulse filamentation and the laser-induced filamentation processing of sapphire.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. L. Li, W. Nie, Z. Li, B. Zhang, L. Wang, P. Haro-Gonzalez, D. Jaque, J.R. Vázquez De Aldana, F. Chen, J. Light. Technol. 37, 3452 (2019). https://doi.org/10.1109/JLT.2019.2917076

    Article  ADS  Google Scholar 

  2. H. Tan, J. Duan, Appl. Phys. A Mater. Sci. Process. 123, 481 (2017). https://doi.org/10.1007/s00339-017-1079-y

    Article  ADS  Google Scholar 

  3. F. Ahmed, M. Shamim Ahsan, M. Seop Lee, M.B.G. Jun, Appl. Phys. A Mater. Sci. Process. 114, 1161 (2014). https://doi.org/10.1007/s00339-013-7705-4

    Article  ADS  Google Scholar 

  4. R.A. Ganeev, Appl. Phys. A Mater. Sci. Process. 123, 1 (2017). https://doi.org/10.1007/s00339-017-0935-0

    Article  ADS  Google Scholar 

  5. Y. Yu, L. Jiang, Q. Cao, X. Shi, Q. Wang, G. Wang, Y. Lu, Appl. Phys. A Mater. Sci. Process. 122, 1 (2016). https://doi.org/10.1007/s00339-016-9773-8

    Article  ADS  Google Scholar 

  6. I. Zergioti, K.D. Kyrkis, D.G. Papazoglou, S. Tzortzakis, Appl. Surf. Sci. 253, 7865 (2007). https://doi.org/10.1016/j.apsusc.2007.02.095

    Article  ADS  Google Scholar 

  7. B. Poumellec, M. Lancry, A. Chahid-Erraji, P.G. Kazansky, Opt. Mater. Express 1, 766 (2011). https://doi.org/10.1364/ome.1.000766

    Article  ADS  Google Scholar 

  8. A. Couairon, L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz, Phys. Rev. B Condens. Matter Mater. Phys. 71, 12 (2005). https://doi.org/10.1103/PhysRevB.71.125435

    Article  Google Scholar 

  9. Y. Dai, A. Patel, J. Song, M. Beresna, P.G. Kazansky, Opt. Express 24, 19344 (2016). https://doi.org/10.1364/oe.24.019344

    Article  ADS  Google Scholar 

  10. Y. Li, H. Liu, M. Hong, Opt. Express 28, 6242 (2020). https://doi.org/10.1364/oe.381268

    Article  ADS  Google Scholar 

  11. H. Liu, Y. Li, W. Lin, M. Hong, Opt. Laser Technol. 132, 106472 (2020). https://doi.org/10.1016/j.optlastec.2020.106472

    Article  Google Scholar 

  12. H. Liu, W. Lin, M. Hong, Light Sci. Appl. 10, 162 (2021). https://doi.org/10.1038/s41377-021-00596-5

    Article  ADS  Google Scholar 

  13. X.Q. Liu, B.F. Bai, Q.D. Chen, H.B. Sun, Opto Electron. Adv. 2, 190021 (2019). https://doi.org/10.29026/oea.2019.190021

    Article  Google Scholar 

  14. A. Benayas, D. Jaque, B. McMillen, K.P. Chen, J. Appl. Phys. 107, 3 (2010). https://doi.org/10.1063/1.3280029

    Article  Google Scholar 

  15. P. Béjot, J. Kasparian, S. Henin, V. Loriot, T. Vieillard, E. Hertz, O. Faucher, B. Lavorel, J.P. Wolf, Phys. Rev. Lett. 104, 10 (2010). https://doi.org/10.1103/PhysRevLett.104.103903

    Article  Google Scholar 

  16. C. Romero, R. Borrego-Varillas, A. Camino, G. Mínguez-Vega, O. Mendoza-Yero, J. Hernández-Toro, J.R. Vázquez de Aldana, Opt. Express 19, 4977 (2011). https://doi.org/10.1364/oe.19.004977

    Article  ADS  Google Scholar 

  17. M. Vengris, N. Garejev, G. Tamošauskas, A. Čepėnas, L. Rimkus, A. Varanavičius, V. Jukna, A. Dubietis, Sci. Rep. 9, 1 (2019). https://doi.org/10.1038/s41598-019-45357-y

    Article  Google Scholar 

  18. A. Houard, V. Jukna, G. Point, Y.-B. André, S. Klingebiel, M. Schultze, K. Michel, T. Metzger, A. Mysyrowicz, Opt. Express 24, 7437 (2016). https://doi.org/10.1364/oe.24.007437

    Article  ADS  Google Scholar 

  19. L. Amina, F. Ji, T.Y. Yan, R. Ma, Opto Electron. Adv. 2, 190003 (2019). https://doi.org/10.29026/oea.2019.190003

    Article  Google Scholar 

  20. T. Yan, L. Ji, R. Ma, Amina, Z. Lin, Ceram. Int. 46, 16074 (2020). https://doi.org/10.1016/j.ceramint.2020.03.159

    Article  Google Scholar 

  21. R. Ma, L. Ji, T. Yan, L. Zhang, T. Zhang, Opt. Express 28, 20461 (2020). https://doi.org/10.1364/oe.394765

    Article  ADS  Google Scholar 

  22. A. Couairon, E. Brambilla, T. Corti, D. Majus, O.D.J. Ramírez-Góngora, M. Kolesik, Eur. Phys. J. Spec. Top. 199, 5 (2011). https://doi.org/10.1140/epjst/e2011-01503-3

    Article  Google Scholar 

  23. M. Wang, W. Mei, Y. Wang, Opt. Laser Technol. 113, 123 (2019). https://doi.org/10.1016/j.optlastec.2018.12.007

    Article  ADS  Google Scholar 

  24. N.M. Bulgakova, R. Stoian, A. Rosenfeld, Quantum Electron. 40, 966 (2010). https://doi.org/10.1070/qe2010v040n11abeh014445

    Article  ADS  Google Scholar 

  25. A. Jarnac, G. Tamosauskas, D. Majus, A. Houard, A. Mysyrowicz, A. Couairon, A. Dubietis, Phys. Rev. A At. Mol. Opt. Phys. 89, 033809 (2014). https://doi.org/10.1103/PhysRevA.89.033809

    Article  ADS  Google Scholar 

  26. A.A. Dergachev, A.A. Ionin, V.P. Kandidov, D.V. Mokrousova, L.V. Seleznev, D.V. Sinitsyn, E.S. Sunchugasheva, S.A. Shlenov, Laser Phys. 25, 065402 (2015). https://doi.org/10.1088/1054-660X/25/6/065402

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China [Grant No.51975017]; National Key R&D Program of China [No. 2018YFB1107500]; Scientific Research Project of Beijing Educational Committee (KZ202110005012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingfei Ji.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, T., Ji, L. & Sun, W. Characteristics and formation mechanism of filamentary plasma string induced by single picosecond laser pulse in sapphire. Appl. Phys. A 128, 39 (2022). https://doi.org/10.1007/s00339-021-05147-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-05147-8

Keywords

Navigation