Skip to main content
Log in

Laser surface functionalization to achieve extreme surface wetting conditions and resultant surface functionalities

激光表面功能化实现极端表面润湿特性及相应表面功能

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Wetting condition of micro/nanostructured surface has received tremendous attention due to the potential applications in commercial, industrial, and military areas. Surfaces with extreme wetting properties, e. g., superhydrophobic or superhydrophilic, are extensively employed due to their superior anti-icing, drag reduction, enhanced boiling heat transfer, self-cleaning, and anti-bacterial properties depending on solid-liquid interfacial interactions. Laser-based techniques have gained popularity in recent years to create micro/nano-structured surface owing to their high flexibility, system precision, and ease for automation. These techniques create laser induced periodic surface structures (LIPSS) or hierarchical structures on substrate material. However, micro/nanostructures alone cannot attain the desired wettability. Subsequent modification of surface chemistry is essentially needed to achieve target extreme wettability. This review paper aims to provide a comprehensive review for both laser texturing techniques and the following chemistry modification methods. Recent research progress and fundamental mechanisms of surface structure generation via different types of lasers and various chemistry modification methods are discussed. The complex combination between the laser texturing and surface chemistry modification methods to decide the final wetting condition is presented. More importantly, surface functionalities of these surfaces with extreme wetting properties are discussed. Lastly, prospects for future research are proposed and discussed.

摘要

微纳结构化表面的润湿特性因其在商业、工业和军事等领域的潜在应用而受到广泛关注。具有 极端润湿特性的表面,如超疏水或超亲水表面,已经实现了防冰、减阻、传热、自清洁和抗细菌等多种应用。基于激光的加工工艺具有高灵活性、系统准确性和高自动化程度等优点,在近些年成为了制备极端润湿性表面的一种新式方法。激光工艺可在表面上诱导出周期性表面结构或者多级微纳结构。然而,目标润湿性的实现不仅需要表面结构的改变,同时需要对表面化学进行适当的调控。本文综述了激光加工诱导表面结构改变和表面化学调控相结合以实现极端表面润湿性方面的最新研究进展。首先,介绍了激光工艺如何实现表面结构的改变,包括激光与材料相互作用的机理和不同激光加工方法如何诱导表面结构的产生。其次,介绍了调控激光加工表面化学改性的不同方法。然后,介绍了激光方法制备出的极端润湿性表面展现出的各种表面功能。最后,提出了该领域目前面临的问题和未来的展望。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. GAU H, HERMINGHAUS S, LENZ P, et al. Liquid morphologies on structured surfaces: From microchannels to microchips [J]. Science, 1999, 283(5398): 46–49. DOI: https://doi.org/10.1126/science.283.5398.46.

    Article  Google Scholar 

  2. KHANNA R, NIGAM K D P. Partial wetting in porous catalysts: Wettability and wetting efficiency [J]. Chemical Engineering Science, 2002, 57(16): 3401–3405. DOI: https://doi.org/10.1016/S0009-2509(02)00211-7.

    Article  Google Scholar 

  3. LAMPIN M, WAROCQUIER C, LEGRIS C, et al. Correlation between substratum roughness and wettability, cell adhesion, and cell migration [J]. Journal of Biomedical Materials Research, 1997, 36(1): 99–108. DOI: https://doi.org/10.1002/(sici)1097-4636(199707)36:1<99:aid-jbm12>3.0.co;2-e.

    Article  Google Scholar 

  4. LAWRENCE J, HAO L, CHEW H R. On the correlation between Nd: YAG laser-induced wettability characteristics modification and osteoblast cell bioactivity on a titanium alloy [J]. Surface and Coatings Technology, 2006, 200(18–19): 5581–5589. DOI: https://doi.org/10.1016/j.surfcoat.2005.07.107.

    Article  Google Scholar 

  5. VOROBYEV A, GUO Chun-lei. Making human enamel and dentin surfaces superwetting for enhanced adhesion [J]. Applied Physics Letters, 2011, 99: 193703. DOI: https://doi.org/10.1063/1.3660579.

    Article  Google Scholar 

  6. KESHAV T R, BASU S. Spreading of liquid droplets on proton exchange membrane of a direct alcohol fuel cell [J]. Chemical Engineering Science, 2007, 62(24): 7515–7522. DOI: https://doi.org/10.1016/j.ces.2007.08.019.

    Article  Google Scholar 

  7. PRABHU K N, FERNADES P, KUMAR G. Effect of substrate surface roughness on wetting behaviour of vegetable oils [J]. Materials & Design, 2009, 30(2): 297–305. DOI: https://doi.org/10.1016/j.matdes.2008.04.067.

    Article  Google Scholar 

  8. ZHAO Xiu-cai, BLUNT M J, YAO Jun. Pore-scale modeling: Effects of wettability on waterflood oil recovery [J]. Journal of Petroleum Science and Engineering, 2010, 71(3–4): 169–178. DOI: https://doi.org/10.1016/j.petrol.2010.01.011.

    Article  Google Scholar 

  9. SON Y, KIM C, YANG D H, et al. Spreading of an inkjet droplet on a solid surface with a controlled contact angle at low Weber and Reynolds numbers [J]. Langmuir, 2008, 24(6): 2900–2907. DOI: https://doi.org/10.1021/la702504v.

    Article  Google Scholar 

  10. PERELAER J, HENDRIKS C E, DE LAAT A W M, et al. One-step inkjet printing of conductive silver tracks on polymer substrates [J]. Nanotechnology, 2009, 20(16): 165303. DOI: https://doi.org/10.1088/0957-4484/20/16/165303.

    Article  Google Scholar 

  11. HABEDANK J B, GÜNTER F J, BILLOT N, et al. Rapid electrolyte wetting of lithium-ion batteries containing laser structured electrodes: In situ visualization by neutron radiography [J]. The International Journal of Advanced Manufacturing Technology, 2019, 102(9–12): 2769–2778. DOI: https://doi.org/10.1007/s00170-019-03347-4.

    Article  Google Scholar 

  12. JEON D H. Wettability in electrodes and its impact on the performance of lithium-ion batteries [J]. Energy Storage Materials, 2019, 18: 139–147. DOI: https://doi.org/10.1016/j.ensm.2019.01.002.

    Article  Google Scholar 

  13. PFLEGING W, PRÖLL J. A new approach for rapid electrolyte wetting in tape cast electrodes for lithium-ion batteries [J]. Journal of Materials Chemistry A, 2014, 36: 14918–14926. DOI: https://doi.org/10.1039/C4TA02353F.

    Article  Google Scholar 

  14. SZUBZDA B, SZMAJA A, HALAMA A. Influence of structure and wettability of supercapacitor electrodes carbon materials on their electrochemical properties in water and organic solutions [J]. Electrochimica Acta, 2012, 86: 255–259. DOI: https://doi.org/10.1016/j.electacta.2012.08.060.

    Article  Google Scholar 

  15. AVASTHI P, BALAKRISHNAN V. Tuning the wettability of vertically aligned CNT−TiO2 hybrid electrodes for enhanced supercapacitor performance [J]. Advanced Materials Interfaces, 2019, 6(6): 1801842.

    Article  Google Scholar 

  16. QU Jun, BLAU P J, DAI Sheng, et al. Tribological characteristics of aluminum alloys sliding against steel lubricated by ammonium and imidazolium ionic liquids [J]. Wear, 2009, 267(5–8): 1226–1231. DOI: https://doi.org/10.1016/j.wear.2008.12.038.

    Article  Google Scholar 

  17. QU Jun, CHI Miao-fang, MEYER H M, et al. Nanostructure and composition of tribo-boundary films formed in ionic liquid lubrication [J]. Tribology Letters, 2011, 43(2): 205–211. DOI: https://doi.org/10.1007/s11249-011-9800-z.

    Article  Google Scholar 

  18. BAI W, ZHANG H, LIU B, et al. Effects of superu2010 absorbent polymers on the physical and chemical properties of soil following different wetting and drying cycles [J]. Soil Use and Management, 2010, 26(3): 253–260.

    Article  Google Scholar 

  19. KOCH K, BHUSHAN B, BARTHLOTT W. Diversity of structure, morphology and wetting of plant surfaces [J]. Soft Matter, 2008, 4: 1943–1963. DOI: https://doi.org/10.1039/B804854A.

    Article  Google Scholar 

  20. KOCH K, BHUSHAN B, BARTHLOTT W. Multifunctional surface structures of plants: An inspiration for biomimetics [J]. Progress in Materials Science, 2009, 54(2): 137–178. DOI: https://doi.org/10.1016/j.pmatsci.2008.07.003.

    Article  Google Scholar 

  21. FENG X Q, GAO X, WU Z, et al. Superior water repellency of water strider legs with hierarchical structures: Experiments and analysis [J]. Langmuir, 2007, 23(9): 4892–4896. DOI: https://doi.org/10.1021/la063039b.

    Article  Google Scholar 

  22. BARTHLOTT W, NEINHUIS C. Purity of the sacred lotus, or escape from contamination in biological surfaces [J]. Planta, 1997, 202(1): 1–8. DOI: https://doi.org/10.1007/s004250050096.

    Article  Google Scholar 

  23. OTTEN A, HERMINGHAUS S. How plants keep dry: A physicist’s point of view [J]. Langmuir, 2004, 20(6): 2405–2408. DOI: https://doi.org/10.1021/la034961d.

    Article  Google Scholar 

  24. GU Zhong-ze, UETSUKA H, TAKAHASHI K, et al. Structural color and the lotus effect [J]. Angewandte Chemie (International Ed in English), 2003, 42(8): 894–897. DOI: https://doi.org/10.1002/anie.200390235.

    Article  Google Scholar 

  25. KINOSHITA S. Structural colors in the realm of nature [M]. Singapore: World Scientific, 2008.

    Book  Google Scholar 

  26. E Jia-qiang, JIN Yu, DENG Yuan-wang, et al. Wetting models and working mechanisms of typical surfaces existing in nature and their application on superhydrophobic surfaces: A review [J]. Advanced Materials Interfaces, 2018, 5(1): 1701052.

    Article  Google Scholar 

  27. SUN T, FENG L, GAO X, et al. Bioinspired surfaces with special wettability [J]. Accounts of Chemical Research, 2005, 38(8): 644–652.

    Article  Google Scholar 

  28. FENG X, JIANG L. Design and creation of superwetting/antiwetting surfaces [J]. Advanced Materials, 2006, 18(23): 3063–3078.

    Article  Google Scholar 

  29. EICK J D, JOHNSON L N, FROMER J R, et al. Surface topography: Its influence on wetting and adhesion in a dental adhesive system [J]. Journal of Dental Research, 1972, 51(3): 780–788. DOI: https://doi.org/10.1177/00220345720510031401.

    Article  Google Scholar 

  30. PARK S J, SEO M K. Solid-liquid interface [C]//Interface Science and Composites. Amsterdam, The Netherlands, 2011, 18: 147–252.

    Article  Google Scholar 

  31. KOCH K, BARTHLOTT W. Superhydrophobic and superhydrophilic plant surfaces: An inspiration for biomimetic materials [J]. Philosophical Transactions Series A: Mathematical, Physical, and Engineering Sciences, 2009, 367(1893): 1487–1509. DOI: https://doi.org/10.1098/rsta.2009.0022.

    Article  Google Scholar 

  32. HE An, LIU Wen-wen, XUE Wei, et al. Nanosecond laser ablated copper superhydrophobic surface with tunable ultrahigh adhesion and its renewability with low temperature annealing [J]. Applied Surface Science, 2018, 434: 120–125. DOI: https://doi.org/10.1016/j.apsusc.2017.10.143.

    Article  Google Scholar 

  33. BHUSHAN B, HER E. Fabrication of superhydrophobic surfaces with high and low adhesion inspired from rose petal [J]. Langmuir, 2010, 26(11): 8207–8217.

    Article  Google Scholar 

  34. VOROBYEV A Y, GUO Chun-lei. Metal pumps liquid uphill [J]. Applied Physics Letters, 2009, 94(22): 224102. DOI: https://doi.org/10.1063/1.3117237.

    Article  Google Scholar 

  35. VOROBYEV A Y, GUO Chun-lei. Water sprints uphill on glass [J]. Journal of Applied Physics, 2010, 108(12): 123512. DOI: https://doi.org/10.1063/1.3511431.

    Article  Google Scholar 

  36. VOROBYEV A Y, GUO Chun-lei. Laser turns silicon superwicking [J]. Optics Express, 2010, 18(7): 6455–6460. DOI: https://doi.org/10.1364/OE.18.006455.

    Article  Google Scholar 

  37. VOROBYEV A Y, GUO Chun-lei. Superwicking surfaces produced by femtosecond laser [J]. Advanced Lasers, 2015, 193: 101–115. DOI: https://doi.org/10.1007/978-94-017-9481-7_7.

    Article  Google Scholar 

  38. SAMANTA A, WANG Qing-hua, SHAW S K, et al. Roles of chemistry modification for laser textured metal alloys to achieve extreme surface wetting behaviors [J]. Materials & Design, 2020, 192: 108744. DOI: https://doi.org/10.1016/j.matdes.2020.108744.

    Article  Google Scholar 

  39. BOGOSLOV E A, DANILAEV M P, MIKHAILOV S A, et al. Energy efficiency of an integral anti-ice system based on fluoroplastic films [J]. Journal of Engineering Physics and Thermophysics, 2016, 89(4): 815–820. DOI: https://doi.org/10.1007/s10891-016-1441-5.

    Article  Google Scholar 

  40. CAO L, JONES A K, SIKKA V K, et al. Anti-icing superhydrophobic coatings [J]. Langmuir, 2009, 25(21): 12444–12448. DOI: https://doi.org/10.1021/la902882b.

    Article  Google Scholar 

  41. RUAN M, LI W, WANG B, et al. Preparation and anti-icing behavior of superhydrophobic surfaces on aluminum alloy substrates [J]. Langmuir, 2013, 29(27): 8482–8491. DOI: https://doi.org/10.1021/la400979d.

    Article  Google Scholar 

  42. BOINOVICH L B, EMELYANENKO A M, EMELYANENKO K A, et al. Anti-icing properties of a superhydrophobic surface in a salt environment: An unexpected increase in freezing delay times for weak brine droplets [J]. Physical Chemistry Chemical Physics (PCCP), 2016, 18(4): 3131–3136. DOI: https://doi.org/10.1039/c5cp06988b.

    Article  Google Scholar 

  43. JAGDHEESH R, DIAZ M, OCAÑA J. Bio-inspired self-cleaning ultrahydrophobic aluminium surface by laser processing [J]. RSC Advances, 2016, 6: 72933–72941. DOI: https://doi.org/10.1039/C6RA12236A.

    Article  Google Scholar 

  44. VOROBYEV A Y, GUO Chun-lei. Multifunctional surfaces produced by femtosecond laser pulses [J]. Journal of Applied Physics, 2015, 117(3): 033103. DOI: https://doi.org/10.1063/1.4905616.

    Article  Google Scholar 

  45. TA D V, DUNN A, WASLEY T J, et al. Nanosecond laser textured superhydrophobic metallic surfaces and their chemical sensing applications [J]. Applied Surface Science, 2015, 357: 248–254. DOI: https://doi.org/10.1016/j.apsusc.2015.09.027.

    Article  Google Scholar 

  46. GOSE J W, GOLOVIN K, TUTEJA A, et al. Experimental investigation of turbulent skin-friction drag reduction using superhydrophobic surfaces [C]//31st Symposium on Naval Hydrodynamics, 2016(September): 11–16.

  47. MIN T, KIM J. Effects of hydrophobic surface on skin-friction drag [J]. Physics of Fluids, 2004, 16(7): L55.

    Article  MATH  Google Scholar 

  48. PU Xia, LI Guang-ji, HUANG Han-lu. Preparation, anti-biofouling and drag-reduction properties of a biomimetic shark skin surface [J]. Biology Open, 2016, 5(4): 389–396. DOI: https://doi.org/10.1242/bio.016899.

    Article  Google Scholar 

  49. TRUESDELL R, MAMMOLI A, VOROBIEFF P, et al. Drag reduction on a patterned superhydrophobic surface [J]. Physical Review Letters, 2006, 97(4): 044504. DOI: https://doi.org/10.1103/PhysRevLett.97.044504.

    Article  Google Scholar 

  50. RAUSCHER M, DIETRICH S. Wetting phenomena in nanofluidics [J]. Annual Review of Materials Research, 2008, 38(1): 143–172.

    Article  Google Scholar 

  51. FARHADI S, FARZANEH M, KULINICH S A. Anti-icing performance of superhydrophobic surfaces [J]. Applied Surface Science, 2011, 257(14): 6264–6269. DOI: https://doi.org/10.1016/j.apsusc.2011.02.057.

    Article  Google Scholar 

  52. FERRARI M, BENEDETTI A. Superhydrophobic surfaces for applications in seawater [J]. Advances in Colloid and Interface Science, 2015, 222: 291–304. DOI: https://doi.org/10.1016/j.cis.2015.01.005.

    Article  Google Scholar 

  53. FERRARI M, BENEDETTI A, SANTINI E, et al. Biofouling control by superhydrophobic surfaces in shallow euphotic seawater [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 480: 369–375. DOI: https://doi.org/10.1016/j.colsurfa.2014.11.009.

    Article  Google Scholar 

  54. ZHANG Bin-bin, HU Xiu-hua, ZHU Qing-jun, et al. Controllable Dianthus caryophyllus-like superhydrophilic/superhydrophobic hierarchical structure based on self-congregated nanowires for corrosion inhibition and biofouling mitigation [J]. Chemical Engineering Journal, 2017, 312: 317–327. DOI: https://doi.org/10.1016/j.cej.2016.11.147.

    Article  Google Scholar 

  55. ELLINAS K, TSEREPI A, GOGOLIDES E. Durable superhydrophobic and superamphiphobic polymeric surfaces and their applications: A review [J]. Advances in Colloid and Interface Science, 2017, 250: 132–157. DOI: https://doi.org/10.1016/j.cis.2017.09.003.

    Article  Google Scholar 

  56. JAGGESSAR A, SHAHALI H, MATHEW A, et al. Biomimicking nano and micro-structured surface fabrication for antibacterial properties in medical implants [J]. Journal of Nanobiotechnology, 2017, 15(1): 64. DOI: https://doi.org/10.1186/s12951-017-0306-1.

    Article  Google Scholar 

  57. TRIPATHY A, SREEDHARAN S, BHASKARLA C, et al. Enhancing the bactericidal efficacy of nanostructured multifunctional surface using an ultrathin metal coating [J]. Langmuir, 2017, 33(44): 12569–12579.

    Article  Google Scholar 

  58. WANG Peng, QIU Ri, ZHANG Dun, et al. Fabricated superhydrophobic film with potentiostatic electrolysis method on copper for corrosion protection [J]. Electrochimica Acta, 2010, 56(1): 517–522. DOI: https://doi.org/10.1016/j.electacta.2010.09.017.

    Article  Google Scholar 

  59. WANG Peng, ZHANG Dun, LU Zhou. Advantage of superhydrophobic surface as a barrier against atmospheric corrosion induced by salt deliquescence [J]. Corrosion Science, 2015, 90: 23–32. DOI: https://doi.org/10.1016/j.corsci.2014.09.001.

    Article  Google Scholar 

  60. ZHANG Bin-bin, ZHAO Xia, LI Yan-tao, et al. Fabrication of durable anticorrosion superhydrophobic surfaces on aluminum substrates via a facile one-step electrodeposition approach [J]. RSC Advances, 2016, 6: 35455–35465. DOI: https://doi.org/10.1039/C6RA05484F.

    Article  Google Scholar 

  61. NANAYAKKARA Y S, PERERA S, BINDIGANAVALE S, et al. The effect of AC frequency on the electrowetting behavior of ionic liquids [J]. Analytical Chemistry, 2010, 82(8): 3146–3154. DOI: https://doi.org/10.1021/ac9021852.

    Article  Google Scholar 

  62. KESHAVARZ-MOTAMED Z, KADEM L, DOLATABADI A. Effects of dynamic contact angle on numerical modeling of electrowetting in parallel plate microchannels [J]. Microfluidics and Nanofluidics, 2009, 8(1): 47–56. DOI: https://doi.org/10.1007/s10404-009-0460-3.

    Article  Google Scholar 

  63. IM Y, JOSHI Y, DIETZ C, et al. Enhanced boiling of a dielectric liquid on copper nanowire surfaces [J]. International Journal of Micro-nano Scale Transport, 2010, 1(1): 79–96.

    Article  Google Scholar 

  64. LI Chen, WANG Zuan-kai, WANG P I, et al. Nanostructured copper interfaces for enhanced boiling [J]. Small (Weinheim an Der Bergstrasse, Germany), 2008, 4(8): 1084–1088. DOI: https://doi.org/10.1002/smll.200700991.

    Article  Google Scholar 

  65. CHEN Ren-kun, LU Ming-chang, SRINIVASAN V, et al. Nanowires for enhanced boiling heat transfer [J]. Nano Letters, 2009, 9(2): 548–553. DOI: https://doi.org/10.1021/nl8026857.

    Article  Google Scholar 

  66. ROMOLI L, MORONI F, KHAN M M A. A study on the influence of surface laser texturing on the adhesive strength of bonded joints in aluminium alloys [J]. CIRP Annals, 2017, 66(1): 237–240. DOI: https://doi.org/10.1016/j.cirp.2017.04.123.

    Article  Google Scholar 

  67. LI Jian, YAN Long, LI Wei-jun, et al. Superhydrophilic-underwater superoleophobic ZnO-based coated mesh for highly efficient oil and water separation [J]. Materials Letters, 2015, 153: 62–65. DOI: https://doi.org/10.1016/j.matlet.2015.03.146.

    Article  Google Scholar 

  68. JI S, RAMADHIANTI P A, NGUYEN T B, et al. Simple fabrication approach for superhydrophobic and superoleophobic Al surface [J]. Microelectronic Engineering, 2013, 111: 404–408. DOI: https://doi.org/10.1016/j.mee.2013.04.010.

    Article  Google Scholar 

  69. SONG J, HUANG S, HU K, et al. Fabrication of superoleophobic surfaces on Al substrates [J]. Journal of Materials Chemistry A, 2013, 1(46): 14783–14789.

    Article  Google Scholar 

  70. BARTHWAL S, KIM Y S, LIM S H. Mechanically robust superamphiphobic aluminum surface with nanopore-embedded microtexture [J]. Langmuir, 2013, 29(38): 11966–11974. DOI: https://doi.org/10.1021/la402600h.

    Article  Google Scholar 

  71. BARTHWAL S, KIM Y S, LIM S H. Fabrication of amphiphobic surface by using titanium anodization for large-area three-dimensional substrates [J]. Journal of Colloid and Interface Science, 2013, 400: 123–129. DOI: https://doi.org/10.1016/j.jcis.2013.02.037.

    Article  Google Scholar 

  72. CHOI H, CHOO S, SHIN J, et al. Fabrication of superhydrophobic and oleophobic surfaces with overhang structure by reverse nanoimprint lithography [J]. Journal of Physical Chemistry C, 2013, 117: 24354–24359. DOI: https://doi.org/10.1021/JP4070399.

    Article  Google Scholar 

  73. HAYASE G, KANAMORI K, HASEGAWA G, et al. A superamphiphobic macroporous silicone monolith with marshmallow-like flexibility [J]. Angewandte Chemie, 2013, 52(41): 10788–10791. DOI: https://doi.org/10.1002/anie.201304169.

    Article  Google Scholar 

  74. LI Y, ZHU X, ZHOU X, et al. A facile way to fabricate a superamphiphobic surface [J]. Applied Physics A: Materials Science and Processing, 2014, 115(3): 765–770.

    Article  Google Scholar 

  75. DARMANIN T, GUITTARD F. Superoleophobic surfaces with short fluorinated chains [J]. Soft Matter, 2013, 9: 5982–5990. DOI: https://doi.org/10.1039/C3SM50643F.

    Article  Google Scholar 

  76. BELLANGER H, DARMANIN T, GIVENCHY E T D, et al. Influence of intrinsic oleophobicity and surface structuration on the superoleophobic properties of PEDOP films bearing two fluorinated tails [J]. Journal of Materials Chemistry, 2013, 1: 2896–2903. DOI: https://doi.org/10.1039/C2TA00517D.

    Article  Google Scholar 

  77. DARMANIN T, TARRADE J, CELIA E, et al. Superoleophobic meshes with high adhesion by electrodeposition of conducting polymer containing short perfluorobutyl chains [J]. Journal of Physical Chemistry C, 2014, 118: 2052–2057. DOI: https://doi.org/10.1021/JP410639J.

    Article  Google Scholar 

  78. TARRADE J, DARMANIN T, GIVENCHY E T D, et al. Super liquid-repellent properties of electrodeposited hydrocarbon and fluorocarbon copolymers [J]. RSC Advances, 2013, 3: 10848–10853. DOI: https://doi.org/10.1039/C3RA40636A.

    Article  Google Scholar 

  79. DRAME A, DARMANIN T, DIENG S, et al. Superhydrophobic and oleophobic surfaces containing wrinkles and nanoparticles of PEDOT with two short fluorinated chains [J]. RSC Advances, 2014, 4: 10935–10943. DOI: https://doi.org/10.1039/C3RA47479H.

    Article  Google Scholar 

  80. KWON M H, SHIN H S, CHU C N. Fabrication of a superhydrophobic surface on metal using laser ablation and electrodeposition [J]. Applied Surface Science, 2014, 288: 222–228. DOI: https://doi.org/10.1016/j.apsusc.2013.10.011.

    Article  Google Scholar 

  81. SUN Tao-lei, WANG Guo-jie, LIU Huan, et al. Control over the wettability of an aligned carbon nanotube film [J]. Journal of the American Chemical Society, 2003, 125(49): 14996–14997. DOI: https://doi.org/10.1021/ja038026o.

    Article  Google Scholar 

  82. LIU Bin, JIANG Ge-dong, WANG Wen-jun, et al. Porous microstructures induced by picosecond laser scanning irradiation on stainless steel surface [J]. Optics and Lasers in Engineering, 2016, 78: 55–63. DOI: https://doi.org/10.1016/j.optlaseng.2015.10.003.

    Article  Google Scholar 

  83. STRATAKIS E, BONSE J, HEITZ J, et al. Laser engineering of biomimetic surfaces [J]. Materials Science and Engineering R: Reports, 2020, 141: 100562. DOI: https://doi.org/10.1016/j.mser.2020.100562.

    Article  Google Scholar 

  84. ALNASER A S, KHAN S A, GANEEV R A, et al. Recent advances in femtosecond laser-induced surface structuring for oil-water separation [J]. Applied Sciences, 2019, 9(8): 1554.

    Article  Google Scholar 

  85. PAZOKIAN H, SELIMIS A, BARZIN J, et al. Tailoring the wetting properties of polymers from highly hydrophilic to superhydrophobic using UV laser pulses [J]. Journal of Micromechanics and Microengineering, 2012, 22(3): 035001.

    Article  Google Scholar 

  86. GUPTA A, JOSHI M R, MAHATO N, et al. Superhydrophobic surfaces [M]//Biosurfaces: A Materials Science and Engineering Perspective, Wiley, 2015, 11: 170–200.

    Google Scholar 

  87. SAMAHA M A, TAFRESHI H V, GAD-EL-HAK M. Superhydrophobic surfaces: From the lotus leaf to the submarine [J]. Comptes Rendus Mécanique, 2012, 340(1–2): 18–34. DOI: https://doi.org/10.1016/j.crme.2011.11.002.

    Article  Google Scholar 

  88. JEEVAHAN J, CHANDRASEKARAN M, BRITTO JOSEPH G, et al. Superhydrophobic surfaces: A review on fundamentals, applications, and challenges [J]. Journal of Coatings Technology and Research, 2018, 15(2): 231–250. DOI: https://doi.org/10.1007/s11998-017-0011-x.

    Article  Google Scholar 

  89. SIMPSON J T, HUNTER S R, AYTUG T. Superhydrophobic materials and coatings: A review [J]. Reports on Progress in Physics, 2015, 78(8): 086501. DOI: https://doi.org/10.1088/0034-4885/78/8/086501.

    Article  Google Scholar 

  90. BARATI DARBAND G, ALIOFKHAZRAEI M, KHORSAND S, et al. Science and engineering of superhydrophobic surfaces: Review of corrosion resistance, chemical and mechanical stability [J]. Arabian Journal of Chemistry, 2020, 13(1): 1763–1802. DOI: https://doi.org/10.1016/j.arabjc.2018.01.013.

    Article  Google Scholar 

  91. MILIONIS A, LOTH E, BAYER I S. Recent advances in the mechanical durability of superhydrophobic materials [J]. Advances in Colloid and Interface Science, 2016, 229: 57–79. DOI: https://doi.org/10.1016/j.cis.2015.12.007.

    Article  Google Scholar 

  92. YAN Y Y, GAO N, BARTHLOTT W. Mimicking natural superhydrophobic surfaces and grasping the wetting process: A review on recent progress in preparing superhydrophobic surfaces [J]. Advances in Colloid and Interface Science, 2011, 169(2): 80–105. DOI: https://doi.org/10.1016/j.cis.2011.08.005.

    Article  Google Scholar 

  93. ZHANG P, LV F Y. A review of the recent advances in superhydrophobic surfaces and the emerging energy-related applications [J]. Energy, 2015, 82: 1068–1087. DOI: https://doi.org/10.1016/j.energy.2015.01.061.

    Article  Google Scholar 

  94. DRELICH J, CHIBOWSKI E. Superhydrophilic and superwetting surfaces: Definition and mechanisms of control [J]. Langmuir, 2010, 26(24): 18621–18623. DOI: https://doi.org/10.1021/la1039893.

    Article  Google Scholar 

  95. DRELICH J, CHIBOWSKI E, MENG D D, et al. Hydrophilic and superhydrophilic surfaces and materials [J]. Soft Matter, 2011, 7(21): 9804–9828. DOI: https://doi.org/10.1039/C1SM05849E.

    Article  Google Scholar 

  96. ZHANG Ji-lin, SEVERTSON S J. Fabrication and use of artificial superhydrophilic surfaces [J]. Journal of Adhesion Science and Technology, 2014, 28(8–9): 751–768. DOI: https://doi.org/10.1080/01694243.2012.697725.

    Article  Google Scholar 

  97. ZHANG Liang, ZHAO Ning, XU Jian. Fabrication and application of superhydrophilic surfaces: A review [J]. Journal of Adhesion Science and Technology, 2014, 28(8–9): 769–790. DOI: https://doi.org/10.1080/01694243.2012.697714.

    Article  Google Scholar 

  98. OTITOJU T A, AHMAD A L, OOI B S. Superhydrophilic (superwetting) surfaces: A review on fabrication and application [J]. Journal of Industrial and Engineering Chemistry, 2017, 47: 19–40. DOI: https://doi.org/10.1016/j.jiec.2016.12.016.

    Article  Google Scholar 

  99. VOROBYEV A Y, GUO Chun-lei. Femtosecond laser structuring of titanium implants [J]. Applied Surface Science, 2007, 253(17): 7272–7280. DOI: https://doi.org/10.1016/j.apsusc.2007.03.006.

    Article  Google Scholar 

  100. VOROBYEV A Y, MAKIN V S, GUO Chun-lei. Periodic ordering of random surface nanostructures induced by femtosecond laser pulses on metals [J]. Journal of Applied Physics, 2007, 101(3): 034903. DOI: https://doi.org/10.1063/1.2432288.

    Article  Google Scholar 

  101. MARTÍNEZ-CALDERON M, RODRÍGUEZ A, DIASPONTE A, et al. Femtosecond laser fabrication of highly hydrophobic stainless steel surface with hierarchical structures fabricated by combining ordered microstructures and LIPSS [J]. Applied Surface Science, 2016, 374: 81–89. DOI: https://doi.org/10.1016/j.apsusc.2015.09.261.

    Article  Google Scholar 

  102. RUKOSUYEV M V, LEE J, CHO S J, et al. One-step fabrication of superhydrophobic hierarchical structures by femtosecond laser ablation [J]. Applied Surface Science, 2014, 313: 411–417. DOI: https://doi.org/10.1016/j.apsusc.2014.05.224.

    Article  Google Scholar 

  103. SIPE J E, YOUNG J F, PRESTON J S, et al. Laser-induced periodic surface structure I: Theory [J]. Physical Review B, 1983, 27(2): 1141–1154.

    Article  Google Scholar 

  104. BONSE J, KRÜGER J, HÖHM S, et al. Femtosecond laser-induced periodic surface structures [J]. Jounral of Laser Applications, 2012, 24(4): 042006.

    Article  Google Scholar 

  105. GARRELIE F, COLOMBIER J P, PIGEON F, et al. Evidence of surface plasmon resonance in ultrafast laser-induced ripples [J]. Optics Express, 2011, 19(10): 9035–9043. DOI: https://doi.org/10.1364/OE.19.009035.

    Article  Google Scholar 

  106. HUANG Min, ZHAO Fu-li, CHENG Ya, et al. Origin of laser-induced near-subwavelength ripples: Interference between surface plasmons and incident laser [J]. ACS Nano, 2009, 3(12): 4062–4070. DOI: https://doi.org/10.1021/nn900654v.

    Article  Google Scholar 

  107. MIYAJI G, MIYAZAKI K. Origin of periodicity in nanostructuring on thin film surfaces ablated with femtosecond laser pulses [J]. Optics Express, 2008, 16(20): 16265–16271. DOI: https://doi.org/10.1364/oe.16.016265.

    Article  Google Scholar 

  108. BOROWIEC A, HAUGEN H K. Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses [J]. Applied Physics Letters, 2003, 82(25): 4462–4464. DOI: https://doi.org/10.1063/1.1586457.

    Article  Google Scholar 

  109. HENYK M, VOGEL N, WOLFFRAMM D, et al. Femtosecond laser ablation from dielectric materials: Comparison to arc discharge erosion [J]. Applied Physics A, 1999, 69(1): S355–S358. DOI: https://doi.org/10.1007/s003390051416.

    Article  Google Scholar 

  110. REIF J, COSTACHE F, HENYK M, et al. Ripples revisited: Non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics [J]. Applied Surface Science, 2002, 197–198: 891–895. DOI: https://doi.org/10.1016/S0169-4332(02)00450-6.

    Article  Google Scholar 

  111. AHMMED K M T, GRAMBOW C A, KIETZIG A. Fabrication of micro/nano structures on metals by femtosecond laser micromachining [J]. Micromachines, 2014, 5: 1219–1253. DOI: https://doi.org/10.3390/mi5041219.

    Article  Google Scholar 

  112. GNILITSKYI I, GRUZDEV V, BULGAKOVA N M, et al. Mechanisms of high-regularity periodic structuring of silicon surface by sub-MHz repetition rate ultrashort laser pulses [J]. Applied Physics Letters, 2016, 109(14): 143101. DOI: https://doi.org/10.1063/1.4963784.

    Article  Google Scholar 

  113. TSIBIDIS G, BARBEROGLOU M, LOUKAKOS P, et al. Dynamics of ripple formation on silicon surfaces by ultrashort laser pulses in subablation conditions [J]. Physical Review B, 2011, 86: 115316. DOI: https://doi.org/10.1103/PhysRevB.86.115316.

    Article  Google Scholar 

  114. TSIBIDIS G D, FOTAKIS C, STRATAKIS E. From ripples to spikes: A hydrodynamical mechanism to interpret femtosecond laser-induced self-assembled structures [J]. Physical Review B, 2015, 92(4): 041405.

    Article  Google Scholar 

  115. CUNHA A, SERRO A P, OLIVEIRA V, et al. Wetting behaviour of femtosecond laser textured Ti−6Al−4V surfaces [J]. Applied Surface Science, 2013, 265: 688–696. DOI: https://doi.org/10.1016/j.apsusc.2012.11.085.

    Article  Google Scholar 

  116. LI Bao-jia, LI Huang, HUANG Li-jing, et al. Femtosecond pulsed laser textured titanium surfaces with stable superhydrophilicity and superhydrophobicity [J]. Applied Surface Science, 2016, 389: 585–593. DOI: https://doi.org/10.1016/j.apsusc.2016.07.137.

    Article  Google Scholar 

  117. STEELE A, BARADA K N, ALEXANDER D, et al. Linear abrasion of a titanium superhydrophobic surface prepared by ultrafast laser microtexturing [J]. Journal of Micromechanics and Microengineering, 2013, 23(11): 115012.

    Article  Google Scholar 

  118. BALDACCHINI T, CAREY J E, ZHOU Ming, et al. Superhydrophobic surfaces prepared by microstructuring of silicon using a femtosecond laser [J]. Langmuir, 2006, 22(11): 4917–4919. DOI: https://doi.org/10.1021/la053374k.

    Article  Google Scholar 

  119. HER T H, FINLAY R J, WU C, et al. Microstructuring of silicon with femtosecond laser pulses [J]. Applied Physics Letters, 1998, 73(12): 1673–1675. DOI: https://doi.org/10.1063/1.122241.

    Article  Google Scholar 

  120. WU Bo, ZHOU Ming, LI Jian, et al. Superhydrophobic surfaces fabricated by microstructuring of stainless steel using a femtosecond laser [J]. Applied Surface Science, 2009, 256(1): 61–66. DOI: https://doi.org/10.1016/j.apsusc.2009.07.061.

    Article  Google Scholar 

  121. MORADI S, KAMAL S, ENGLEZOS P, et al. Femtosecond laser irradiation of metallic surfaces: Effects of laser parameters on superhydrophobicity [J]. Nanotechnology, 2013, 24(41): 415302. DOI: https://doi.org/10.1088/0957-4484/24/41/415302.

    Article  Google Scholar 

  122. KAM D, BHATTACHARYA S, MAZUMDER J. Control of the wetting properties of an AISI 316L stainless steel surface by femtosecond laser-induced surface modification [J]. Journal of Micromechanics and Microengineering, 2012, 22(10): 105019.

    Article  Google Scholar 

  123. LONG Jiang-you, PAN Lin, FAN Pei-xun, et al. Cassie-state stability of metallic superhydrophobic surfaces with various micro/nanostructures produced by a femtosecond laser [J]. Langmuir, 2016, 32(4): 1065–1072. DOI: https://doi.org/10.1021/acs.langmuir.5b04329.

    Article  Google Scholar 

  124. BIZI-BANDOKI P, BENAYOUN S, VALETTE S, et al. Modifications of roughness and wettability properties of metals induced by femtosecond laser treatment [J]. Applied Surface Science, 2011, 257(12): 5213–5218. DOI: https://doi.org/10.1016/j.apsusc.2010.12.089.

    Article  Google Scholar 

  125. BIZI-BANDOKI P, VALETTE S, AUDOUARD E, et al. Time dependency of the hydrophilicity and hydrophobicity of metallic alloys subjected to femtosecond laser irradiations [J]. Applied Surface Science, 2013, 273: 399–407. DOI: https://doi.org/10.1016/j.apsusc.2013.02.054.

    Article  Google Scholar 

  126. SKOULAS E, MANOUSAKI A, FOTAKIS C, et al. Biomimetic surface structuring using cylindrical vector femtosecond laser beams [J]. Scientific Reports, 2017, 7: 45114. DOI: https://doi.org/10.1038/srep45114.

    Article  Google Scholar 

  127. SARBADA S, SHIN Y C. Superhydrophobic contoured surfaces created on metal and polymer using a femtosecond laser [J]. Applied Surface Science, 2017, 405: 465–475. DOI: https://doi.org/10.1016/j.apsusc.2017.02.019.

    Article  Google Scholar 

  128. JAGDHEESH R, PATHIRAJ B, KARATAY E, et al. Laser-induced nanoscale superhydrophobic structures on metal surfaces [J]. Langmuir, 2011, 27(13): 8464–8469. DOI: https://doi.org/10.1021/la2011088.

    Article  Google Scholar 

  129. LONG Jiang-you, FAN Pei-xun, ZHONG Min-lin, et al. Superhydrophobic and colorful copper surfaces fabricated by picosecond laser induced periodic nanostructures [J]. Applied Surface Science, 2014, 311: 461–467. DOI: https://doi.org/10.1016/j.apsusc.2014.05.090.

    Article  Google Scholar 

  130. WANG Xing-sheng, LI Cheng-yu, HONG Wei, et al. Fabrication of ordered hierarchical structures on stainless steel by picosecond laser for modified wettability applications [J]. Optics Express, 2018, 26(15): 18998–19008. DOI: https://doi.org/10.1364/OE.26.018998.

    Article  Google Scholar 

  131. MILLES S, DAHMS J, SOLDERA M, et al. Stable superhydrophobic aluminum surfaces based on laser-fabricated hierarchical textures [J]. Materials (Basel, Switzerland), 2021, 14(1): 184. DOI: https://doi.org/10.3390/ma14010184.

    Article  Google Scholar 

  132. YANG Zhi-ru, ZHU Chong-chong, ZHENG Nan, et al. Superhydrophobic surface preparation and wettability transition of titanium alloy with micro/nano hierarchical texture [J]. Materials (Basel, Switzerland), 2018, 11(11): 2210. DOI: https://doi.org/10.3390/ma11112210.

    Article  Google Scholar 

  133. NGUYEN H H, TIEU A K, WAN Shan-hong, et al. Surface characteristics and wettability of superhydrophobic silanized inorganic glass coating surfaces textured with a picosecond laser [J]. Applied Surface Science, 2021, 537: 147808. DOI: https://doi.org/10.1016/j.apsusc.2020.147808.

    Article  Google Scholar 

  134. RAJAB F H, LIAUW C M, BENSON P S, et al. Picosecond laser treatment production of hierarchical structured stainless steel to reduce bacterial fouling [J]. Food and Bioproducts Processing, 2018, 109: 29–40. DOI: https://doi.org/10.1016/j.fbp.2018.02.009.

    Article  Google Scholar 

  135. RAJAB F H, LIAUW C M, BENSON P S, et al. Production of hybrid macro/micro/nano surface structures on Ti6Al4V surfaces by picosecond laser surface texturing and their antifouling characteristics [J]. Colloids and Surfaces B: Biointerfaces, 2017, 160: 688–696. DOI: https://doi.org/10.1016/j.colsurfb.2017.10.008.

    Article  Google Scholar 

  136. JAGDHEESH R. Fabrication of a superhydrophobic Al2O3 surface using picosecond laser pulses [J]. Langmuir, 2014, 30(40): 12067–12073. DOI: https://doi.org/10.1021/la5033527.

    Article  Google Scholar 

  137. ZHANG Zhao-yang, GU Qin-ming, JIANG Wen, et al. Achieving of bionic super-hydrophobicity by electrodepositing nano-Ni-Pyramids on the picosecond laser-ablated micro-Cu-cone surface [J]. Surface and Coatings Technology, 2019, 363: 170–178. DOI: https://doi.org/10.1016/j.surfcoat.2019.02.037.

    Article  Google Scholar 

  138. DING Shi-jie, ZHU De-hua, XUE Wei, et al. Picosecond laser-induced hierarchical periodic near- and deep-subwavelength ripples on stainless-steel surfaces [J]. Nanomaterials (Basel, Switzerland), 2019, 10(1): 62. DOI: https://doi.org/10.3390/nano10010062.

    Article  Google Scholar 

  139. SUN Ke, YANG Huan, XUE Wei, et al. Anti-biofouling superhydrophobic surface fabricated by picosecond laser texturing of stainless steel [J]. Applied Surface Science, 2018, 436: 263–267. DOI: https://doi.org/10.1016/j.apsusc.2017.12.012.

    Article  Google Scholar 

  140. RAJAB F H, WHITEHEAD D, LIU Zhu, et al. Characteristics of hierarchical micro/nano surface structure formation generated by picosecond laser processing in water and air [J]. Applied Physics B, 2017, 123(12): 1–12. DOI: https://doi.org/10.1007/s00340-017-6858-9.

    Article  Google Scholar 

  141. WANG Xing-sheng, XU Bin, CHEN Yun-fu, et al. Fabrication of micro/nano-hierarchical structures for droplet manipulation via velocity-controlled picosecond laser surface texturing [J]. Optics and Lasers in Engineering, 2019, 122: 319–327. DOI: https://doi.org/10.1016/j.optlaseng.2019.06.021.

    Article  Google Scholar 

  142. NGO C V, CHUN D M. Fast wettability transition from hydrophilic to superhydrophobic laser-textured stainless steel surfaces under low-temperature annealing [J]. Applied Surface Science, 2017, 409: 232–240. DOI: https://doi.org/10.1016/j.apsusc.2017.03.038.

    Article  Google Scholar 

  143. PATIL D, ARAVINDAN S, WASSON M, et al. Fast fabrication of superhydrophobic titanium alloy as antibacterial surface using nanosecond laser texturing [J]. Journal of Micro and Nano-Manufacturing, 2018, 6: 011002. DOI: https://doi.org/10.1115/1.4038093.

    Article  Google Scholar 

  144. QIAO Juan, ZHU Li-na, YUE Wen, et al. The effect of attributes of micro-shapes of laser surface texture on the wettability of WC-CrCo metal ceramic coatings [J]. Surface and Coatings Technology, 2018, 334: 429–437. DOI: https://doi.org/10.1016/j.surfcoat.2017.12.001.

    Article  Google Scholar 

  145. TA V D, DUNN A, WASLEY T J, et al. Laser textured superhydrophobic surfaces and their applications for homogeneous spot deposition [J]. Applied Surface Science, 2016, 365: 153–159. DOI: https://doi.org/10.1016/j.apsusc.2016.01.019.

    Article  Google Scholar 

  146. TA V D, DUNN A, WASLEY T J, et al. Laser textured surface gradients [J]. Applied Surface Science, 2016, 371: 583–589. DOI: https://doi.org/10.1016/j.apsusc.2016.03.054.

    Article  Google Scholar 

  147. TANG M, SHIM V, PAN Z Y, et al. Laser ablation of metal substrates for super-hydrophobic effect [J]. Journal of Laser Micro Nanoengineering, 2011, 6(1): 6–9.

    Article  Google Scholar 

  148. TANG Ming-kai, HUANG Xing-jiu, GUO Zheng, et al. Fabrication of robust and stable superhydrophobic surface by a convenient, low-cost and efficient laser marking approach [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 484: 449–456. DOI: https://doi.org/10.1016/j.colsurfa.2015.08.029.

    Article  Google Scholar 

  149. TANG Ming-kai, HUANG Xing-jiu, YU Jin-gui, et al. Simple fabrication of large-area corrosion resistant superhydrophobic surface with high mechanical strength property on TiAl-based composite [J]. Journal of Materials Processing Technology, 2017, 239: 178–186. DOI: https://doi.org/10.1016/j.jmatprotec.2016.08.024.

    Article  Google Scholar 

  150. YAN Huang-ping, ABDUL RASHID M R B, KHEW S Y, et al. Realization of laser textured brass surface via temperature tuning for surface wettability transition [J]. Opto-Electronic Engineering, 2017(6): 587–592.

  151. YAN Huang-ping, ABDUL RASHID M R B, KHEW S Y, et al. Wettability transition of laser textured brass surfaces inside different mediums [J]. Applied Surface Science, 2018, 427: 369–375. DOI: https://doi.org/10.1016/j.apsusc.2017.08.218.

    Article  Google Scholar 

  152. YANG Z, TIAN Y L, YANG C J, et al. Modification of wetting property of Inconel 718 surface by nanosecond laser texturing [J]. Applied Surface Science, 2017, 414: 313–324. DOI: https://doi.org/10.1016/j.apsusc.2017.04.050.

    Article  Google Scholar 

  153. BOINOVICH L B, MODIN E B, SAYFUTDINOVA A R, et al. Combination of functional nanoengineering and nanosecond laser texturing for design of superhydrophobic aluminum alloy with exceptional mechanical and chemical properties [J]. ACS Nano, 2017, 11(10): 10113–10123. DOI: https://doi.org/10.1021/acsnano.7b04634.

    Article  Google Scholar 

  154. CAI Yu-kui, CHANG Wen-long, LUO Xi-chun, et al. Superhydrophobic structures on 316L stainless steel surfaces machined by nanosecond pulsed laser [J]. Precision Engineering, 2018, 52: 266–275. DOI: https://doi.org/10.1016/j.precisioneng.2018.01.004.

    Article  Google Scholar 

  155. CARPEÑO D F, DICKINSON M, SEAL C, et al. Induced hydrophobicity in microu2010 and nanostructured nickel thin films obtained by ultraviolet pulsed laser treatment [J]. Physica Status Solidi A: Applications and Materials Science, 2016, 213(10): 2709–2713.

    Article  Google Scholar 

  156. DONG Chang-sheng, GU Yu, ZHONG Min-lin, et al. Fabrication of superhydrophobic Cu surfaces with tunable regular micro and random nano-scale structures by hybrid laser texture and chemical etching [J]. Journal of Materials Processing Technology, 2011, 211(7): 1234–1240. DOI: https://doi.org/10.1016/j.jmatprotec.2011.02.007.

    Article  Google Scholar 

  157. LI Bao-jia, HUANG Li-jing, REN Nai-fei, et al. Laser ablation processing of zinc sheets in hydrogen peroxide solution for preparing hydrophobic microstructured surfaces [J]. Materials Letters, 2016, 164: 384–387. DOI: https://doi.org/10.1016/j.matlet.2015.11.035.

    Article  Google Scholar 

  158. LI Jing, ZHAO Shi-cai, DU Feng, et al. One-step fabrication of superhydrophobic surfaces with different adhesion via laser processing [J]. Journal of Alloys and Compounds, 2018, 739: 489–498. DOI: https://doi.org/10.1016/j.jallcom.2017.12.252.

    Article  Google Scholar 

  159. WANG Jun-nan, GAO Long-yue, LI Yong-liang, et al. Experimental research on laser interference micro/nano fabrication of hydrophobic modification of stent surface [J]. Lasers in Medical Science, 2017, 32(1): 221–227. DOI: https://doi.org/10.1007/s10103-016-2105-6.

    Article  Google Scholar 

  160. CHUN D M, NGO C V, LEE K M. Fast fabrication of superhydrophobic metallic surface using nanosecond laser texturing and low-temperature annealing [J]. CIRP Annals, 2016, 65(1): 519–522. DOI: https://doi.org/10.1016/j.cirp.2016.04.019.

    Article  Google Scholar 

  161. CHEN Tian-chi, LIU Hong-tao, YANG Hai-feng, et al. Biomimetic fabrication of robust self-assembly superhydrophobic surfaces with corrosion resistance properties on stainless steel substrate [J]. RSC Advances, 2016, 6: 43937–43949. DOI: https://doi.org/10.1039/C6RA06500G.

    Article  Google Scholar 

  162. NGO C V, CHUN D M. Control of laser-ablated aluminum surface wettability to superhydrophobic or superhydrophilic through simple heat treatment or water boiling post-processing [J]. Applied Surface Science, 2018, 435: 974–982. DOI: https://doi.org/10.1016/j.apsusc.2017.11.185.

    Article  Google Scholar 

  163. FARSHCHIAN B, GATABI J R, BERNICK S M, et al. Scaling and mechanism of droplet array formation on a laser-ablated superhydrophobic grid [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 547: 49–55. DOI: https://doi.org/10.1016/j.colsurfa.2018.03.026.

    Article  Google Scholar 

  164. GARCIA-GIRON A, ROMANO J M, LIANG Y, et al. Combined surface hardening and laser patterning approach for functionalising stainless steel surfaces [J]. Applied Surface Science, 2018, 439: 516–524. DOI: https://doi.org/10.1016/j.apsusc.2018.01.012.

    Article  Google Scholar 

  165. GREGORČIČ P, ŠETINA-BATIČ B, HOČEVAR M. Controlling the stainless steel surface wettability by nanosecond direct laser texturing at high fluences [J]. Applied Physics A, 2017, 123(12): 766. DOI: https://doi.org/10.1007/s00339-017-1392-5.

    Article  Google Scholar 

  166. JAGDHEESH R, GARCÍA-BALLESTEROS J J, OCAÑA J L. One-step fabrication of near superhydrophobic aluminum surface by nanosecond laser ablation [J]. Applied Surface Science, 2016, 374: 2–11. DOI: https://doi.org/10.1016/j.apsusc.2015.06.104.

    Article  Google Scholar 

  167. LUO B H, SHUM P W, ZHOU Z F, et al. Preparation of hydrophobic surface on steel by patterning using laser ablation process [J]. Surface and Coatings Technology, 2010, 204(8): 1180–1185. DOI: https://doi.org/10.1016/j.surfcoat.2009.10.043.

    Article  Google Scholar 

  168. EHRHARDT M, HAN Bing, FROST F, et al. Generation of laser-induced periodic surface structures (LIPSS) in fused silica by single NIR nanosecond laser pulse irradiation in confinement [J]. Applied Surface Science, 2019, 470: 56–62. DOI: https://doi.org/10.1016/j.apsusc.2018.11.119.

    Article  Google Scholar 

  169. SIMÕES J G A B, RIVA R, MIYAKAWA W. High-speed laser-induced periodic surface structures (LIPSS) generation on stainless steel surface using a nanosecond pulsed laser [J]. Surface and Coatings Technology, 2018, 344: 423–432. DOI: https://doi.org/10.1016/j.surfcoat.2018.03.052.

    Article  Google Scholar 

  170. VEIKO V, KARLAGINA Y, MOSKVIN M, et al. Metal surface coloration by oxide periodic structures formed with nanosecond laser pulses [J]. Optics and Lasers in Engineering, 2017, 96: 63–67. DOI: https://doi.org/10.1016/j.optlaseng.2017.04.014.

    Article  Google Scholar 

  171. CHEN Lei, LIU Ze-lin, GUO Chuan, et al. Nanosecond laser-induced controllable periodical surface structures on silicon [J]. Chinese Optics Letters, 2022(1): 186–191.

  172. MILLES S, SOLDERA M, VOISIAT B, et al. Fabrication of superhydrophobic and ice-repellent surfaces on pure aluminium using single and multiscaled periodic textures [J]. Scientific Reports, 2019, 9: 13944. DOI: https://doi.org/10.1038/s41598-019-49615-x.

    Article  Google Scholar 

  173. RAJAB F H, LIU Zhu, LI Lin. Long term superhydrophobic and hybrid superhydrophobic/superhydrophilic surfaces produced by laser surface micro/nano surface structuring [J]. Applied Surface Science, 2019, 466: 808–821. DOI: https://doi.org/10.1016/j.apsusc.2018.10.099.

    Article  Google Scholar 

  174. WANG Chao, HUANG Hu, QIAN Yong-feng, et al. Nitrogen assisted formation of large-area ripples on Ti6Al4V surface by nanosecond pulse laser irradiation [J]. Precision Engineering, 2022, 73: 244–256. DOI: https://doi.org/10.1016/j.precisioneng.2021.09.012.

    Article  Google Scholar 

  175. ZHAO Y, SU Y, HOU X, et al. Directional sliding of water: Biomimetic snake scale surfaces [J]. Opto-Electronic Advances, 2021, 4(4): 210008.

    Article  Google Scholar 

  176. SU Yi-lin, ZHAO Yi-zhe, JIANG Sheng-yuan, et al. Anisotropic superhydrophobic properties of bioinspired surfaces by laser ablation of metal substrate inside water [J]. Advanced Materials Interfaces, 2021, 8(16): 2100555.

    Article  Google Scholar 

  177. HUERTA-MURILLO D, AGUILAR-MORALES A I, ALAMRI S, et al. Fabrication of multi-scale periodic surface structures on Ti-6Al-4V by direct laser writing and direct laser interference patterning for modified wettability applications [J]. Optics and Lasers in Engineering, 2017, 98: 134–142. DOI: https://doi.org/10.1016/j.optlaseng.2017.06.017.

    Article  Google Scholar 

  178. HUERTA-MURILLO D, GARCÍA-GIRÓN A, ROMANO J M, et al. Wettability modification of laser-fabricated hierarchical surface structures in Ti−6Al−4V titanium alloy [J]. Applied Surface Science, 2019, 463: 838–846. DOI: https://doi.org/10.1016/j.apsusc.2018.09.012.

    Article  Google Scholar 

  179. SERLES P, NIKUMB S, BORDATCHEV E. Superhydrophobic and superhydrophilic functionalized surfaces by picosecond laser texturing [J]. Journal of Laser Applications, 2018, 30(3): 032505.

    Article  Google Scholar 

  180. ZHENG Bu-xiang, JIANG Ge-dong, WANG Wen-jun, et al. Fabrication of superhydrophilic or superhydrophobic self-cleaning metal surfaces using picosecond laser pulses and chemical fluorination [J]. Radiation Effects and Defects in Solids, 2016, 171(5–6): 461–473. DOI: https://doi.org/10.1080/10420150.2016.1211658.

    Article  Google Scholar 

  181. GUAN Y C, LUO F F, LIM G C, et al. Fabrication of metallic surfaces with long-term superhydrophilic property using one-stop laser method [J]. Materials & Design, 2015, 78: 19–24. DOI: https://doi.org/10.1016/j.matdes.2015.04.021.

    Article  Google Scholar 

  182. RAZI S, MADANIPOUR K, MOLLABASHI M. Improving the hydrophilicity of metallic surfaces by nanosecond pulsed laser surface modification [J]. Journal of Laser Applications, 2015, 27: 042006. DOI: https://doi.org/10.2351/1.4928290.

    Article  Google Scholar 

  183. RAJAB F H, LIU Zhu, LI Lin. Production of stable superhydrophilic surfaces on 316L steel by simultaneous laser texturing and SiO2 deposition [J]. Applied Surface Science, 2018, 427: 1135–1145. DOI: https://doi.org/10.1016/j.apsusc.2017.08.122.

    Article  Google Scholar 

  184. TSENG S F, HSIAO W T, CHEN Ming-fei, et al. Surface wettability of silicon substrates enhanced by laser ablation [J]. Applied Physics A, 2010, 101(2): 303–308. DOI: https://doi.org/10.1007/s00339-010-5821-y.

    Article  Google Scholar 

  185. CARDOSO J T, GARCIA-GIRÓN A, ROMANO J M, et al. Influence of ambient conditions on the evolution of wettability properties of an IR-, ns-laser textured aluminium alloy [J]. RSC Advances, 2017, 7(63): 39617–39627.

    Article  Google Scholar 

  186. LONG Jiang-you, ZHONG Min-lin, ZHANG Hong-jun, et al. Superhydrophilicity to superhydrophobicity transition of picosecond laser microstructured aluminum in ambient air [J]. Journal of Colloid and Interface Science, 2015, 441: 1–9. DOI: https://doi.org/10.1016/j.jcis.2014.11.015.

    Article  Google Scholar 

  187. BOINOVICH L B, EMELYANENKO A M, EMELYANENKO K A, et al. Comment on “Nanosecond laser textured superhydrophobic metallic surfaces and their chemical sensing applications” by Duong V. Ta, Andrew Dunn, Thomas J. Wasley, Robert W. Kay, Jonathan Stringer, Patrick J. Smith, Colm Connaughton, Jonathan D. Shephard (Appl. Surf. Sci. 357 (2015) 248–254) [J]. Applied Surface Science, 2016, 379: 111–113. DOI: https://doi.org/10.1016/j.apsusc.2016.04.056.

    Article  Google Scholar 

  188. LAWRENCE J, WAUGH D. Creating superhydrophobic surface structures via the rose petal effect on stainless steel with a picosecond laser [J]. Lasers in Engineering, 2017, 37: 125–134.

    Google Scholar 

  189. LONG Jiang-you, FAN Pei-xun, GONG Ding-wei, et al. Superhydrophobic surfaces fabricated by femtosecond laser with tunable water adhesion: From lotus leaf to rose petal [J]. ACS Applied Materials & Interfaces, 2015, 7(18): 9858–9865. DOI: https://doi.org/10.1021/acsami.5b01870.

    Article  Google Scholar 

  190. WANG Qing-hua, WANG Hui-xin. Tuning water adhesion of superhydrophobic surface by way of facile laser-chemical hybrid process [J]. Surface Innovations, 2021: 2100042.

  191. BRASSARD J, SARKAR D, PERRON J. Fluorine based superhydrophobic coatings [J]. Applied Sciences, 2012, 2: 453–464. DOI: https://doi.org/10.3390/APP2020453.

    Article  Google Scholar 

  192. SUBRAMANIAN B, KIM N, LEE W, et al. Surface modification of droplet polymeric microfluidic devices for the stable and continuous generation of aqueous droplets [J]. Langmuir, 2011, 27(12): 7949–7957. DOI: https://doi.org/10.1021/la200298n.

    Article  Google Scholar 

  193. ACHOUR A, ISLAM M, SOLAYMANI S, et al. Influence of plasma functionalization treatment and gold nanoparticles on surface chemistry and wettability of reactive-sputtered TiO2 thin films [J]. Applied Surface Science, 2018, 458: 678–685. DOI: https://doi.org/10.1016/j.apsusc.2018.07.145.

    Article  Google Scholar 

  194. KHARITONOV A P, KHARITONOVA L N. Surface modification of polymers by direct fluorination: A convenient approach to improve commercial properties of polymeric articles [J]. Pure and Applied Chemistry, 2009, 81: 451–471. DOI: https://doi.org/10.1351/PAC-CON-08-06-02.

    Article  Google Scholar 

  195. CHANG F, CHENG S, HONG S J, et al. Superhydrophilicity to superhydrophobicity transition of CuO nanowire films [J]. Applied Physics Letters, 2010, 96: 114101. DOI: https://doi.org/10.1063/1.3360847.

    Article  Google Scholar 

  196. ZORBA V, STRATAKIS E, BARBEROGLOU M, et al. Biomimetic artificial surfaces quantitatively reproduce the water repellency of a lotus leaf [J]. Advanced Materials, 2008, 20(21): 4049–4054.

    Article  Google Scholar 

  197. NGO C V, CHUN D. Effect of heat treatment temperature on the wettability transition from hydrophilic to superhydrophobic on Laseru2010Ablated metallic surfaces [J]. Advanced Engineering Materials, 2018, 20(7): 1701086.

    Article  Google Scholar 

  198. O’GARA J E, ALDEN B A, GENDREAU C A, et al. Dependence of cyano bonded phase hydrolytic stability on ligand structure and solution pH [J]. Journal of Chromatography A, 2000, 893(2): 245–251. DOI: https://doi.org/10.1016/S0021-9673(00)00696-8.

    Article  Google Scholar 

  199. HORCAJADA P, RÁMILA A, FÉREY G, et al. Influence of superficial organic modification of MCM-41 matrices on drug delivery rate [J]. Solid State Sciences, 2006, 8(10): 1243–1249. DOI: https://doi.org/10.1016/j.solidstatesciences.2006.04.016.

    Article  Google Scholar 

  200. LIU Nian, YAO Yan, CHA J J, et al. Functionalization of silicon nanowire surfaces with metal-organic frameworks [J]. Nano Research, 2012, 5(2): 109–116. DOI: https://doi.org/10.1007/s12274-011-0190-1.

    Article  Google Scholar 

  201. WANG Qing-hua, SAMANTA A, SHAW S K, et al. Nanosecond laser-based high-throughput surface nanostructuring (nHSN) [J]. Applied Surface Science, 2020, 507: 145136. DOI: https://doi.org/10.1016/j.apsusc.2019.145136.

    Article  Google Scholar 

  202. LOU Rui, LI Guang-ying, WANG Xu, et al. Antireflective and superhydrophilic structure on graphite written by femtosecond laser [J]. Micromachines, 2021, 12(3): 236. DOI: https://doi.org/10.3390/mi12030236.

    Article  Google Scholar 

  203. VOROBYEV A Y, GUO Chun-lei. Colorizing metals with femtosecond laser pulses [J]. Applied Physics Letters, 2008, 92(4): 041914. DOI: https://doi.org/10.1063/1.2834902.

    Article  Google Scholar 

  204. PAPADOPOULOS A, SKOULAS E, MIMIDIS A, et al. Biomimetic omnidirectional antireflective glass via direct ultrafast laser nanostructuring [J]. Advanced Materials (Deerfield Beach, Fla), 2019, 31(32): e1901123. DOI: https://doi.org/10.1002/adma.201901123.

    Article  Google Scholar 

  205. NAYAK B K, GUPTA M C. Self-organized micro/nano structures in metal surfaces by ultrafast laser irradiation [J]. Optics and Lasers in Engineering, 2010, 48(10): 940–949. DOI: https://doi.org/10.1016/j.optlaseng.2010.04.010.

    Article  Google Scholar 

  206. VOROBYEV A Y, GUO Chun-lei. Reflection of femtosecond laser light in multipulse ablation of metals [J]. Journal of Applied Physics, 2011, 110(4): 043102. DOI: https://doi.org/10.1063/1.3620898.

    Article  Google Scholar 

  207. VOROBYEV A Y, GUO Chun-lei. Enhanced absorptance of gold following multipulse femtosecond laser ablation [J]. Physical Review B — Condensed Matter and Materials Physics, 2005, 72(19): 195422.

    Article  Google Scholar 

  208. VOROBYEV A Y, TOPKOV A N, GURIN O V, et al. Enhanced absorption of metals over ultrabroad electromagnetic spectrum [J]. Applied Physics Letters, 2009, 95(12): 121106. DOI: https://doi.org/10.1063/1.3227668.

    Article  Google Scholar 

  209. OU Zhi-gui, HUANG Min, ZHAO Fu-li. The fluence threshold of femtosecond laser blackening of metals: The effect of laser-induced ripples [J]. Optics & Laser Technology, 2016, 79: 79–87. DOI: https://doi.org/10.1016/j.optlastec.2015.11.018.

    Article  Google Scholar 

  210. HUANG M, ZHAO F, CHENG Y, et al. The morphological and optical characteristics of femtosecond laser-induced large-area micro/nanostructures on GaAs, Si, and brass [J]. Optics Express, 2010, 18(Suppl 4): A600–A619. DOI: https://doi.org/10.1364/oe.18.00a600.

    Article  Google Scholar 

  211. YANG Yang, YANG Jian-jun, LIANG Chun-yong, et al. Ultra-broadband enhanced absorption of metal surfaces structured by femtosecond laser pulses [J]. Optics Express, 2008, 16(15): 11259–11265. DOI: https://doi.org/10.1364/oe.16.011259.

    Article  Google Scholar 

  212. BOINOVICH L B, EMELYANENKO A M, MODESTOV A D, et al. Synergistic effect of superhydrophobicity and oxidized layers on corrosion resistance of aluminum alloy surface textured by nanosecond laser treatment [J]. ACS Applied Materials & Interfaces, 2015, 7(34): 19500–19508. DOI: https://doi.org/10.1021/acsami.5b06217.

    Article  Google Scholar 

  213. WANG Zhi-guo, SONG Jin-peng, WANG Tian-yi, et al. Laser texturing for superwetting titanium alloy and investigation of its erosion resistance [J]. Coatings, 2021, 11(12): 1547.

    Article  Google Scholar 

  214. de LARA L R, JAGDHEESH R, OCAÑA J L. Corrosion resistance of laser patterned ultrahydrophobic aluminium surface [J]. Materials Letters, 2016, 184: 100–103. DOI: https://doi.org/10.1016/j.matlet.2016.08.022.

    Article  Google Scholar 

  215. LANARA C, MIMIDIS A, STRATAKIS E. Femtosecond laser fabrication of stable hydrophilic and anti-corrosive steel surfaces [J]. Materials (Basel, Switzerland), 2019, 12(20): 3428. DOI: https://doi.org/10.3390/ma12203428.

    Article  Google Scholar 

  216. FADEEVA E, TRUONG V K, STIESCH M, et al. Bacterial retention on superhydrophobic titanium surfaces fabricated by femtosecond laser ablation [J]. Langmuir, 2011, 27(6): 3012–3019. DOI: https://doi.org/10.1021/la104607g.

    Article  Google Scholar 

  217. HASSEBROOK A, LUCIS M J, SHIELD J E, et al. Thermal stability of rare earth oxide coated superhydrophobic microstructured metallic surfaces [C]//Proceedings of the ASME 2015 13th International Conference on Nanochannels, Microchannels, and Minichannels (ICNMM2015). San Francisco, California, USA. 2015: 1–7.

  218. LIN Yi, HAN Jin-peng, CAI Ming-yong, et al. Durable and robust transparent superhydrophobic glass surfaces fabricated by a femtosecond laser with exceptional water repellency and thermostability [J]. Journal of Materials Chemistry, 2018, 6: 9049–9056. DOI: https://doi.org/10.1039/C8TA01965G.

    Article  Google Scholar 

  219. DARMANIN T, GUITTARD F. Recent advances in the potential applications of bioinspired superhydrophobic materials [J]. Journal of Materials Chemistry A, 2014, 39: 16319–16359. DOI: https://doi.org/10.1039/C4TA02071E.

    Article  Google Scholar 

  220. WU Jun-rui, YIN Kai, LI Ming, et al. Under-oil self-driven and directional transport of water on a femtosecond laser-processed superhydrophilic geometry-gradient structure [J]. Nanoscale, 2020, 12(6): 4077–4084. DOI: https://doi.org/10.1039/c9nr09902f.

    Article  Google Scholar 

  221. WU Zhi-peng, YIN Kai, WU Jun-rui, et al. Water droplet rapid spreading transport on femtosecond laser-treated photothermal and superhydrophilic surface [J]. Optics & Laser Technology, 2021, 141: 107099. DOI: https://doi.org/10.1016/j.optlastec.2021.107099.

    Article  Google Scholar 

  222. KIRNER S V, HERMENS U, MIMIDIS A, et al. Mimicking bug-like surface structures and their fluid transport produced by ultrashort laser pulse irradiation of steel [J]. Applied Physics A: Materials Science and Processing, 2017, 123(12): 754.

    Article  Google Scholar 

  223. PARADISANOS I, FOTAKIS C, ANASTASIADIS S H, et al. Gradient induced liquid motion on laser structured black Si surfaces [J]. Applied Physics Letters, 2015, 107(11): 111603. DOI: https://doi.org/10.1063/1.4930959.

    Article  Google Scholar 

  224. XIE Fei, YANG Jian-jun, NGO C V. The effect of femtosecond laser fluence and pitches between V-shaped microgrooves on the dynamics of capillary flow [J]. Results in Physics, 2020, 19: 103606. DOI: https://doi.org/10.1016/j.rinp.2020.103606.

    Article  Google Scholar 

  225. FANG Ran-ran, LI Ze-kai, ZHANG Xian-hang, et al. Spreading and drying dynamics of water drop on hot surface of superwicking Ti-6Al-4V alloy material fabricated by femtosecond laser [J]. Nanomaterials (Basel, Switzerland), 2021, 11(4): 899. DOI: https://doi.org/10.3390/nano11040899.

    Article  Google Scholar 

  226. FANG Ran-ran, ZHANG Xian-hang, ZHENG Jian-gen, et al. Superwicking functionality of femtosecond laser textured aluminum at high temperatures [J]. Nanomaterials (Basel, Switzerland), 2021, 11(11): 2964. DOI: https://doi.org/10.3390/nano11112964.

    Article  Google Scholar 

  227. SONG Yu-xin, WANG Cong, DONG Xin-ran, et al. Controllable superhydrophobic aluminum surfaces with tunable adhesion fabricated by femtosecond laser [J]. Optics & Laser Technology, 2018, 102: 25–31. DOI: https://doi.org/10.1016/j.optlastec.2017.12.024.

    Article  Google Scholar 

  228. YONG J, CHEN F, YANG Q, et al. Femtosecond laser weaving superhydrophobic patterned pdms surfaces with tunable adhesion [J]. Journal of Physical Chemistry C, 2013, 117(47): 24907–24912.

    Article  Google Scholar 

  229. STRATAKIS E, RANELLA A, FOTAKIS C. Biomimetic micro/nanostructured functional surfaces for microfluidic and tissue engineering applications [J]. Biomicrofluidics, 2011, 5(1): 13411. DOI: https://doi.org/10.1063/1.3553235.

    Article  Google Scholar 

  230. STRATAKIS E, MATEESCU A, BARBEROGLOU M, et al. From superhydrophobicity and water repellency to superhydrophilicity: Smart polymer-functionalized surfaces [J]. Chemical Communications (Cambridge, England), 2010, 46(23): 4136–4138. DOI: https://doi.org/10.1039/c003294h.

    Article  Google Scholar 

  231. PAPADOPOULOU E, BARBEROGLOU M, ZORBA V, et al. Reversible photoinduced wettability transition of hierarchical ZnO structures [J]. Journal of Physical Chemistry C, 2009, 113: 2891–2895. DOI: https://doi.org/10.1021/JP8085057.

    Article  Google Scholar 

  232. WANG Qing-hua, WANG Hui-xin, ZHU Zhi-xian, et al. Switchable wettability control of titanium via facile nanosecond laser-based surface texturing [J]. Surfaces and Interfaces, 2021, 24: 101122. DOI: https://doi.org/10.1016/j.surfin.2021.101122.

    Article  Google Scholar 

  233. WANG Qing-hua, CHENG Yang-yang, ZHU Zhi-xian, et al. Modulation and control of wettability and hardness of Zr-based metallic glass via facile laser surface texturing [J]. Micromachines, 2021, 12(11): 1322. DOI: https://doi.org/10.3390/mi12111322.

    Article  Google Scholar 

  234. DOMKE M, SONDEREGGER G, KOSTAL E, et al. Transparent laser-structured glasses with superhydrophilic properties for anti-fogging applications [J]. Applied Physics A, 2019, 125(10): 1–10. DOI: https://doi.org/10.1007/s00339-019-2953-6.

    Article  Google Scholar 

  235. ZUPANČIČ M, STEINBÜCHER M, GREGORČIČ P, et al. Enhanced pool-boiling heat transfer on laser-made hydrophobic/superhydrophilic polydimethylsiloxane-silica patterned surfaces [J]. Applied Thermal Engineering, 2015, 91: 288–297. DOI: https://doi.org/10.1016/j.applthermaleng.2015.08.026.

    Article  Google Scholar 

  236. JALIL S A, ELKABBASH M, ZIHAO LI, et al. Multipronged heat-exchanger based on femtosecond laser-nano/microstructured Aluminum for thermoelectric heat scavengers [J]. Nano Energy, 2020, 75: 104987. DOI: https://doi.org/10.1016/j.nanoen.2020.104987.

    Article  Google Scholar 

  237. SINGH S C, ELKABBASH M, LI Zi-long, et al. Solar-trackable super-wicking black metal panel for photothermal water sanitation [J]. Nature Sustainability, 2020, 3: 938–946. DOI: https://doi.org/10.1038/s41893-020-0566-x.

    Article  Google Scholar 

Download references

Funding

Project(52105175) supported by the National Natural Science Foundation of China; Project(BK20210235) supported by the Natural Science Foundation of Jiangsu Province, China; Project(JSSCBS20210121) supported by the Jiangsu Provincial Innovative and Entrepreneurial Doctor Program, China

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui-xin Wang  (王慧鑫).

Additional information

Contributors

WANG Qing-hua conducted the literature review and wrote the first draft of the manuscript. WANG Hui-xin supervised the research work and edited the draft of manuscript.

Conflict of interest

WANG Qing-hua and WANG Hui-xin declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Qh., Wang, Hx. Laser surface functionalization to achieve extreme surface wetting conditions and resultant surface functionalities. J. Cent. South Univ. 29, 3217–3247 (2022). https://doi.org/10.1007/s11771-022-5140-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-022-5140-4

Key words

关键词

Navigation