Skip to main content
Log in

Effect of surface roughness on femtosecond laser ablation of 4H-SiC substrates

表面粗糙度对飞秒激光烧蚀4H-SiC衬底的影响

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Ablation threshold is an important concept in the study of femtosecond laser micro- and nano-machining. In this paper, the ablation experiments of three kinds of surface roughness 4H-SiC substrates irradiated by femtosecond laser were carried out. The feature thresholds were systematically measured for three surface roughness SiC substrates and found in the modification and annealing regions ranging from coincidence (Ra=0.5 nm) to a clear demarcation (Ra=5.5 nm), eventually being difficult to identify the presence of the former (Ra=89 nm). Under multi-pulse laser irradiation, oriented ripple structures were generated in the annealing region, where deep subwavelength ripples (about 110 nm, Λ ≈ 0.2λ) can be generated above substrates with surface roughness higher than 5.5 nm. We investigated the effect of surface roughness on the ablation morphology, ablation threshold, and periodic structures of femtosecond laser ablation of 4H-SiC substrates, while the ablation threshold was tended to decrease and stabilize with the increase of pulse number N⩾500.

摘要

飞秒激光加工材料中烧蚀阈值对微纳加工有极其重要的指导意义。本文利用飞秒激光辐照三种表面粗糙度4H-SiC 晶片进行烧蚀实验。研究了表面粗糙度对飞秒激光加工4H-SiC 烧蚀形貌、阈值及其周期性条纹的影响。实验系统地测定了三种表面粗糙度SiC 晶片单脉冲及多脉冲烧蚀阈值。分析了单脉冲激光作用下,不同表面粗糙度晶片随脉冲能量变化的烧蚀形貌。在多脉冲激光作用下,退火区产生了定向条纹结构,在SiC 衬底Ra⩾5.5 nm,其表面产生深亚波长波纹(约110 nm,Λ≈0.2λ)。而烧蚀 阈值随着脉冲数N⩾500的增加而降低,并最终趋于稳定。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. MORKOÇ H, STRITE S, GAO G B, et al. Large-band-gap SiC, III–V nitride, and II–VI ZnSe-based semiconductor device technologies [J]. Journal of Applied Physics, 1994, 76(3): 1363–1398. DOI: https://doi.org/10.1063/1.358463.

    Article  Google Scholar 

  2. PRESSER V, NICKEL K G. Silica on silicon carbide [J]. Critical Reviews in Solid State and Materials Sciences, 2008, 33(1): 1–99. DOI: https://doi.org/10.1080/10408430701718914.

    Article  Google Scholar 

  3. VOROBYEV A, GUO Chun-lei. Direct femtosecond laser surface nano/microstructuring and its applications [J]. Laser & Photonics Reviews, 2013, 7(3): 385–407.

    Article  Google Scholar 

  4. MALINAUSKAS M, ŽUKAUSKAS A, HASEGAWA S, et al. Ultrafast laser processing of materials: From science to industry [J]. Light: Science & Applications, 2016, 5(8): e16133. DOI: https://doi.org/10.1038/lsa.2016.133.

    Article  Google Scholar 

  5. ZHU Zhuo, WU Jun-rui, WU Zhi-peng, et al. Femtosecond laser micro/nano fabrication for bioinspired superhydrophobic or underwater superoleophobic surfaces [J]. Journal of Central South University, 2021, 28(12): 3882–3906. DOI: https://doi.org/10.1007/s11771-021-4886-4.

    Article  Google Scholar 

  6. SUGIOKA K, CHENG Ya. Ultrafast lasers—Reliable tools for advanced materials processing [J]. Light: Science & Applications, 2014, 3(4): e149. DOI: https://doi.org/10.1038/lsa.2014.30.

    Article  Google Scholar 

  7. YIN Kai, WU Zhi-peng, WU Jun-rui, et al. Solar-driven thermal-wind synergistic effect on laser-textured superhydrophilic copper foam architectures for ultrahigh efficient vapor generation [J]. Applied Physics Letters, 2021, 118(21): 211905. DOI: https://doi.org/10.1063/5.0050623.

    Article  Google Scholar 

  8. WU Ting-ni, WU Zhi-peng, HE Yu-chun, et al. Femtosecond laser textured porous nanowire structured glass for enhanced thermal imaging [J]. Chinese Optics Letters, 2022(3): 153–156.

  9. BONSE J, KRÜGER J, HÖHM S, et al. Femtosecond laser-induced periodic surface structures [J]. Journal of Laser Applications, 2012, 24(4): 042006. DOI: https://doi.org/10.2351/1.4712658.

    Article  Google Scholar 

  10. GEMINI L, HASHIDA M, SHIMIZU M, et al. Periodic nanostructures self-formed on silicon and silicon carbide by femtosecond laser irradiation [J]. Applied Physics A, 2014, 117(1): 49–54. DOI: https://doi.org/10.1007/s00339-014-8502-4.

    Article  Google Scholar 

  11. HÖHM S, ROSENFELD A, KRÜGER J, et al. Femtosecond diffraction dynamics of laser-induced periodic surface structures on fused silica [J]. Applied Physics Letters, 2013, 102(5): 054102. DOI: https://doi.org/10.1063/1.4790284.

    Article  Google Scholar 

  12. NATHALA C S R, AJAMI A, IONIN A A, et al. Experimental study of fs-laser induced sub-100-nm periodic surface structures on titanium [J]. Optics Express, 2015, 23(5): 5915–5929. DOI: https://doi.org/10.1364/OE.23.005915.

    Article  Google Scholar 

  13. ZHANG Dong-shi, GÖKCE B, SOMMER S, et al. Debris-free rear-side picosecond laser ablation of thin germanium wafers in water with ethanol [J]. Applied Surface Science, 2016, 367: 222–230. DOI: https://doi.org/10.1016/j.apsusc.2016.01.071.

    Article  Google Scholar 

  14. CHEN Hong-xin, JIA Tian-qing, HUANG Min, et al. Visible-infrared femtosecond laser-induced optical breakdown of 6H-SiC [J]. Acta Optica Sinica, 2006, 26(3): 467–470. (in Chinese)

    Google Scholar 

  15. BETTIS J, HOUSE I R, GUENTHER A. 5.1 spot size and pulse duration dependence of laser-induced damage [M]//Laser Induced Damage in Optical Materials, 1976.

  16. LIU X, DU D, MOUROU G. Laser ablation and micromachining with ultrashort laser pulses [J]. IEEE Journal of Quantum Electronics, 1997, 33(10): 1706–1716. DOI: https://doi.org/10.1109/3.631270.

    Article  Google Scholar 

  17. RUDOLPH P, BRZEZINKA K W, WÄSCHE R, et al. Physical chemistry of the femtosecond and nanosecond lasermaterial interaction with SiC and a SiC−TiC−TiB2 composite ceramic compound [J]. Applied Surface Science, 2003, 208209: 285–291. DOI: https://doi.org/10.1016/S0169-4332(02)01356-9.

    Article  Google Scholar 

  18. JEE Y, BECKER M F, WALSER R M. Laser-induced damage on single-crystal metal surfaces [J]. Journal of the Optical Society of America B, 1988, 5(3): 648. DOI: https://doi.org/10.1364/josab.5.000648.

    Article  Google Scholar 

  19. EMMONY D C, HOWSON R P, WILLIS L J. Laser mirror damage in germanium at 10.6 µm [J]. Applied Physics Letters, 1973, 23(11): 598–600. DOI: https://doi.org/10.1063/1.1654761.

    Article  Google Scholar 

  20. HUANG Min, ZHAO Fu-li, CHENG Ya, et al. Origin of laser-induced near-subwavelength ripples: Interference between surface plasmons and incident laser [J]. ACS Nano, 2009, 3(12): 4062–4070. DOI: https://doi.org/10.1021/nn900654v.

    Article  Google Scholar 

  21. BONSE J, GRÄF S. Maxwell meets Marangoni—A review of theories on laser-induced periodic surface structures [J]. Laser & Photonics Reviews, 2020, 14(10): 2000215. DOI: https://doi.org/10.1002/lpor.202000215.

    Article  Google Scholar 

  22. WU X J, JIA T Q, ZHAO F L, et al. Formation mechanisms of uniform arrays of periodic nanoparticles and nanoripples on 6H-SiC crystal surface induced by femtosecond laser ablation [J]. Applied Physics A, 2007, 86(4): 491–495. DOI: https://doi.org/10.1007/s00339-006-3797-4.

    Article  Google Scholar 

  23. REIF J, VARLAMOVA O, COSTACHE F. Femtosecond laser induced nanostructure formation: Self-organization control parameters [J]. Applied Physics A, 2008, 92(4): 1019–1024. DOI: https://doi.org/10.1007/s00339-008-4671-3.

    Article  Google Scholar 

  24. JIAO Lei, KONG De-fu, ZHANG Xu, et al. Ripple period adjustment on SiC surface based on electron dynamics control and its polarization anisotropy [J]. Applied Physics A, 2021, 127(1): 1–9. DOI: https://doi.org/10.1007/s00339-020-04181-2.

    Article  Google Scholar 

  25. PAN A, DIAS A, GOMEZ-ARANZADI M, et al. Formation of laser-induced periodic surface structures on niobium by femtosecond laser irradiation [J]. Journal of Applied Physics, 2014, 115(17): 173101. DOI: https://doi.org/10.1063/1.4873459.

    Article  Google Scholar 

  26. ZHANG Ru, HUANG Chuan-zhen, WANG Jun, et al. Evolution of micro/nano-structural arrays on crystalline silicon carbide by femtosecond laser ablation [J]. Materials Science in Semiconductor Processing, 2021, 121: 105299. DOI: https://doi.org/10.1016/j.mssp.2020.105299.

    Article  Google Scholar 

  27. ZHANG Dong-shi, SUGIOKA K. Hierarchical microstructures with high spatial frequency laser induced periodic surface structures possessing different orientations created by femtosecond laser ablation of silicon in liquids [J]. Opto-Electronic Advances, 2019, 2(3): 19000201–19000218. DOI: https://doi.org/10.29026/oea.2019.190002.

    Article  Google Scholar 

  28. ZHANG D, RANJAN B, TANAKA T, et al. Underwater persistent bubble-assisted femtosecond laser ablation for hierarchical micro/nanostructuring [J]. International Journal of Extreme Manufacturing, 2020, 2(1): 015001.

    Article  Google Scholar 

  29. TOMITA T, KINOSHITA K, MATSUO S, et al. Effect of surface roughening on femtosecond laser-induced ripple structures [J]. Applied Physics Letters, 2007, 90(15): 153115. DOI: https://doi.org/10.1063/1.2720709.

    Article  Google Scholar 

  30. TOMITA T, KUMAI R, MATSUO S, et al. Cross-sectional morphological profiles of ripples on Si, SiC, and HOPG [J]. Applied Physics A, 2009, 97(2): 271–276. DOI: https://doi.org/10.1007/s00339-009-5364-2.

    Article  Google Scholar 

  31. TOMITA T, OKADA T, KAWAHARA H, et al. Microscopic analysis of carbon phases induced by femtosecond laser irradiation on single-crystal SiC [J]. Applied Physics A, 2010, 100(1): 113–117. DOI: https://doi.org/10.1007/s00339-010-5786-x.

    Article  Google Scholar 

  32. LENZNER M, KRÜGER J, SARTANIA S, et al. Femtosecond optical breakdown in dielectrics [J]. Physical Review Letters, 1998, 80(18): 4076–4079. DOI: https://doi.org/10.1103/physrevlett.80.4076.

    Article  Google Scholar 

  33. ZHAI Zhao-yang, WANG Wen-jun, ZHAO Jie, et al. Influence of surface morphology on processing of C/SiC composites via femtosecond laser [J]. Composites Part A: Applied Science and Manufacturing, 2017, 102: 117–125. DOI: https://doi.org/10.1016/j.compositesa.2017.07.031.

    Article  Google Scholar 

  34. SIPE J, YOUNG J F, PRESTON J, et al. Laser-induced periodic surface structure. I. Theory [J]. Physical Review B, 1983, 27(2): 1141.

    Article  Google Scholar 

  35. FLORIAN C, KIRNER S, KRÜGER J, et al. Surface functionalization by laser-induced periodic surface structures [J]. Journal of Laser Applications, 2020, 32: 022063. DOI: https://doi.org/10.2351/7.0000103.

    Article  Google Scholar 

  36. SONG Juan, TAO Wen-jun, GONG Min, et al. The three-level ripples induced by femtosecond laser on a 6H-SiC single crystal and the formation mechanism [J]. Applied Physics A, 2016, 122(4): 1–7. DOI: https://doi.org/10.1007/s00339-016-9967-0.

    Article  Google Scholar 

  37. OBARA G, SHIMIZU H, ENAMI T, et al. Growth of high spatial frequency periodic ripple structures on SiC crystal surfaces irradiated with successive femtosecond laser pulses [J]. Optics Express, 2013, 21(22): 26323–26334. DOI: https://doi.org/10.1364/OE.21.026323.

    Article  Google Scholar 

  38. RUDENKO A, COLOMBIER J P, HÖHM S, et al. Spontaneous periodic ordering on the surface and in the bulk of dielectrics irradiated by ultrafast laser: A shared electromagnetic origin [J]. Scientific Reports, 2017, 7: 12306. DOI: https://doi.org/10.1038/s41598-017-12502-4.

    Article  Google Scholar 

Download references

Funding

Project(52075103) supported by the National Natural Science Foundation of China; Project(2020B1515120058) supported by the Key Project of Regional Joint Fund of Guangdong Basic and Applied Basic Research Foundation, China

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-zhu Xie  (谢小柱).

Additional information

Contributors

CHEN Jian-qiang wrote the first draft of the manuscript, replied to reviewers’ comments and revised the final version. XIE Xiao-zhu provided ideas, financial support and experiment instrumentation. PENG Qing-fa and HE Zi-yu provided the SiC laser ablation experiment data. HU Wei, REN Qing-lei and LONG Jiang-you managed and coordinated the planning and execution of the research, provided the materials for the research.

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Jq., Xie, Xz., Peng, Qf. et al. Effect of surface roughness on femtosecond laser ablation of 4H-SiC substrates. J. Cent. South Univ. 29, 3294–3303 (2022). https://doi.org/10.1007/s11771-022-5136-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-022-5136-0

Key words

关键词

Navigation