Skip to main content
Log in

Promoting reaction kinetics of lithium polysulfides by cobalt polyphthalocyanine derived ultrafine Co nanoparticles mono-dispersed on graphene flakes for Li-S batteries

石墨烯片层上单分散聚酞菁钴衍生超细钴纳米颗粒促进 Li-S电池中多硫化锂的反应动力学

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Lithium-sulfur (Li-S) batteries have been considered as the next generation high energy storage devices. However, its commercialization has been hindered by several issues, especially the dissolution and shuttle of the soluble lithium polysulfides (LiPSs) as well as the slow reaction kinetics of LiPSs which may make shuttling effect even worse. Herein, we report a strategy to address this issue by in-situ transformation of Co—Nx coordinations in cobalt polyphthalocyanine (CoPPc) into Co nanoparticles (Co NPs) embedded in carbon matrix and mono-dispersed on graphene flakes. The Co NPs can provide rich binding and catalytic sites, while graphene flakes act as ideally LiPSs transportation and electron conducting platform. With a remarkable enhanced reaction kinetics of LiPSs via these merits, the sulfur host with a sulfur content up to 70 wt% shows a high initial capacity of 1048 mA·h/g at 0.2C, good rate capability up to 399 mA·h/g at 2C.

摘要

锂硫(Li-S)电池被认为是下一代具有潜力的高能量存储设备。然而,多硫化锂(LiPSs)的穿梭效 应及其在电解液中的溶解,以及使穿梭效应更加严重的LiPSs 迟滞的转化动力学等问题严重制约了 Li-S 电池的商业化进程。基于此,本文采用了将具有Co—Nx配位结构的聚酞菁钴(CoPPc)原位转化为嵌 入碳基体中的钴纳米颗粒(Co NPs),同时将其单分散在石墨烯片层上的策略来解决上述问题。其中, Co纳米颗粒可以提供丰富的吸附和催化位点,石墨烯片层可以作为良好的LiPSs 传输和电子传导平台。 由于这些优点,将其用于锂硫电池正极时(硫含量高达70 wt%),LiPSs 的反应动力学得到显著增强;在 0.2C时能提供高的初始容量(1048 mA·h/g)及在2C时可达399 mA·h/g的良好倍率性能。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ZHANG Bin, LUO Chong, ZHOU Guang-min, et al. Lamellar MXene composite aerogels with sandwiched carbon nanotubes enable stable lithium-sulfur batteries with a high sulfur loading [J]. Advanced Functional Materials, 2021, 31(26): 2100793. DOI: https://doi.org/10.1002/adfm.202100793.

    Article  Google Scholar 

  2. LIANG Zhi-fu, YANG Da-wei, TANG Peng-yi, et al. 2D-organic layered materials: Atomically dispersed Fe in a C2N based catalyst as a sulfur host for efficient lithium — sulfur batteries [J]. Advanced Energy Materials, 2021, 11(5): 2170022. DOI: https://doi.org/10.1002/aenm.202170022.

    Article  Google Scholar 

  3. SUN Zhong-hui, WU Xing-long, PENG Zhang-quan, et al. Compactly coupled nitrogen-doped carbon nanosheets/molybdenum phosphide nanocrystal hollow nanospheres as polysulfide reservoirs for high-performance lithium-sulfur chemistry [J]. Small, 2019, 15(40): 1902491. DOI: https://doi.org/10.1002/smll.201902491.

    Article  Google Scholar 

  4. ZHONG Yi-jun, WANG Shao-feng, SHA Yu-jing, et al. Trapping sulfur in hierarchically porous, hollow indented carbon spheres: A high-performance cathode for lithium — sulfur batteries [J]. Journal of Materials Chemistry A, 2016, 4(24): 9526–9535. DOI: https://doi.org/10.1039/c6ta03187k.

    Article  Google Scholar 

  5. YE Zheng-qing, JIANG Ying, QIAN Ji, et al. Exceptional adsorption and catalysis effects of hollow polyhedra/carbon nanotube confined CoP nanoparticles superstructures for enhanced lithium-sulfur batteries [J]. Nano Energy, 2019, 64: 103965. DOI: https://doi.org/10.1016/j.nanoen.2019.103965.

    Article  Google Scholar 

  6. QIAO Zhen-song, ZHANG Ying-gan, MENG Zhao-hui, et al. Anchoring polysulfides and accelerating redox reaction enabled by Fe-based compounds in lithium-sulfur batteries [J]. Advanced Functional Materials, 2021, 31(21): 2100970. DOI: https://doi.org/10.1002/adfm.202100970.

    Article  Google Scholar 

  7. SUN Ting-ting, ZHAO Xiao-mei, LI Bo, et al. NiMoO4 nanosheets anchored on N-S doped carbon clothes with hierarchical structure as a bidirectional catalyst toward accelerating polysulfides conversion for Li-S battery [J]. Advanced Functional Materials, 2021, 31(25): 2101285. DOI: https://doi.org/10.1002/adfm.202101285.

    Article  Google Scholar 

  8. SHI Hao-dong, REN Xiao-min, LU Jian-min, et al. Dual-functional atomic zinc decorated hollow carbon nanoreactors for kinetically accelerated polysulfides conversion and dendrite free lithium sulfur batteries [J]. Advanced Energy Materials, 2020, 10(39): 2002271. DOI: https://doi.org/10.1002/aenm.202002271.

    Article  Google Scholar 

  9. KONG Long, CHEN Xiang, LI Bo-quan, et al. A bifunctional perovskite promoter for polysulfide regulation toward stable lithium-sulfur batteries [J]. Advanced Materials, 2018, 30(2): 1705219. DOI: https://doi.org/10.1002/adma.201705219.

    Article  Google Scholar 

  10. LUO Chong, LIANG Xing, SUN Ya-fei, et al. An organic nickel salt-based electrolyte additive boosts homogeneous catalysis for lithium-sulfur batteries [J]. Energy Storage Materials, 2020, 33: 290–297. DOI: https://doi.org/10.1016/j.ensm.2020.08.033.

    Article  Google Scholar 

  11. LI Xiang-cun, ZHANG Yue, WANG Shu-ting, et al. Scalable high-areal-capacity Li-S batteries enabled by sandwich-structured hierarchically porous membranes with intrinsic polysulfide adsorption [J]. Nano Letters, 2020, 20(9): 6922–6929. DOI: https://doi.org/10.1021/acs.nanolett.0c03088.

    Article  Google Scholar 

  12. ZHAO Chen, XU Gui-liang, YU Zhou, et al. A high-energy and long-cycling lithium-sulfur pouch cell via a macroporous catalytic cathode with double-end binding sites [J]. Nature Nanotechnology, 2021, 16(2): 166–173. DOI: https://doi.org/10.1038/s41565-020-00797-w.

    Article  MathSciNet  Google Scholar 

  13. XIE Jin, LI Bo-quan, PENG Hong-jie, et al. Implanting atomic cobalt within mesoporous carbon toward highly stable lithium-sulfur batteries [J]. Advanced Materials, 2019, 31(43): 1903813. DOI: https://doi.org/10.1002/adma.201903813.

    Article  Google Scholar 

  14. BOYJOO Y, SHI Hao-dong, OLSSON E, et al. Molecular-level design of pyrrhotite electrocatalyst decorated hierarchical porous carbon spheres as nanoreactors for lithium-sulfur batteries [J]. Advanced Energy Materials, 2020, 10(20): 2000651. DOI: https://doi.org/10.1002/aenm.202000651.

    Article  Google Scholar 

  15. CAI Jing-sheng, JIN Jia, FAN Zhao-di, et al. 3D printing of a V8C7-VO2 bifunctional scaffold as an effective polysulfide immobilizer and lithium stabilizer for Li-S batteries [J]. Advanced Materials, 2020, 32(50): 2005967. DOI: https://doi.org/10.1002/adma.202005967.

    Article  Google Scholar 

  16. ZHANG Heng, YANG Li, ZHANG Pei-gen, et al. MXene-derived TinO2n−1 quantum dots distributed on porous carbon nanosheets for stable and long-life Li-S batteries: Enhanced polysulfide mediation via defect engineering [J]. Advanced Materials, 2021, 33(21): 2008447. DOI: https://doi.org/10.1002/adma.202008447.

    Article  Google Scholar 

  17. SAROHA R, OH J H, LEE J S, et al. Hierarchically porous nanofibers comprising multiple core-shell Co3O4@graphitic carbon nanoparticles grafted within N-doped CNTs as functional interlayers for excellent Li-S batteries [J]. Chemical Engineering Journal, 2021, 426: 130805. DOI: https://doi.org/10.1016/j.cej.2021.130805.

    Article  Google Scholar 

  18. TANG Wei, CHEN Zhong-xin, TIAN Bing-bing, et al. In situ observation and electrochemical study of encapsulated sulfur nanoparticles by MoS2 flakes [J]. Journal of the American Chemical Society, 2017, 139(29): 10133–10141. DOI: https://doi.org/10.1021/jacs.7b05371.

    Article  Google Scholar 

  19. YAO Wei-qi, ZHENG Wei-zhong, XU Jie, et al. ZnS-SnS@NC heterostructure as robust lithiophilicity and sulfiphilicity mediator toward high-rate and long-life lithium-sulfur batteries [J]. ACS Nano, 2021, 15(4): 7114–7130. DOI: https://doi.org/10.1021/acsnano.1c00270.

    Article  Google Scholar 

  20. HE Jia-rui, HARTMANN G, LEE M, et al. Freestanding 1T MoS2/graphene heterostructures as a highly efficient electrocatalyst for lithium polysulfides in Li-S batteries [J]. Energy & Environmental Science, 2019, 12(1): 344–350. DOI: https://doi.org/10.1039/c8ee03252a.

    Article  Google Scholar 

  21. CHEN Yi, ZHANG Wen-xue, ZHOU Dong, et al. Co-Fe mixed metal phosphide nanocubes with highly interconnected-pore architecture as an efficient polysulfide mediator for lithium-sulfur batteries [J]. ACS Nano, 2019, 13(4): 4731–4741. DOI: https://doi.org/10.1021/acsnano.9b01079.

    Article  Google Scholar 

  22. CHEN Xiao-xia, ZENG Su-yuan, MUHEIYATI H, et al. Double-shelled Ni — Fe — P/N-doped carbon nanobox derived from a Prussian blue analogue as an electrode material for K-ion batteries and Li-S batteries [J]. ACS Energy Letters, 2019, 4(7): 1496–1504. DOI: https://doi.org/10.1021/acsenergylett.9b00573.

    Article  Google Scholar 

  23. HE Jia-rui, BHARGAV A, MANTHIRAM A. Molybdenum boride as an efficient catalyst for polysulfide redox to enable high-energy-density lithium-sulfur batteries [J]. Advanced Materials (Deerfield Beach, Fla), 2020, 32(40): e2004741. DOI: https://doi.org/10.1002/adma.202004741.

    Article  Google Scholar 

  24. WU Tian-li, YANG Ting, ZHANG Ji-zong, et al. CoB and BN composites enabling integrated adsorption/catalysis to polysulfides for inhibiting shuttle-effect in Li-S batteries [J]. Journal of Energy Chemistry, 2021, 59: 220–228. DOI: https://doi.org/10.1016/j.jechem.2020.11.015.

    Article  Google Scholar 

  25. ZHANG Yong-guang, LI Gao-ran, WANG Jia-yi, et al. Hierarchical defective Fe3-xC@C hollow microsphere enables fast and long-lasting lithium-sulfur batteries [J]. Advanced Functional Materials, 2020, 30(22): 2001165. DOI: https://doi.org/10.1002/adfm.202001165.

    Article  Google Scholar 

  26. WANG Shan-xing, LIU Xin-ye, DUAN Huan-huan, et al. Fe3C/Fe nanoparticles embedded in N-doped porous carbon nanosheets and graphene: A thin functional interlayer for PP separator to boost performance of Li-S batteries [J]. Chemical Engineering Journal, 2021, 415: 129001. DOI: https://doi.org/10.1016/j.cej.2021.129001.

    Article  Google Scholar 

  27. HAO Zhang-xiang, YUAN Li-xia, CHEN Chao-ji, et al. TiN as a simple and efficient polysulfide immobilizer for lithium-sulfur batteries [J]. Journal of Materials Chemistry A, 2016, 4(45): 17711–17717. DOI: https://doi.org/10.1039/c6ta07411a.

    Article  Google Scholar 

  28. QI Bin, ZHAO Xiao-sen, WANG Shao-gang, et al. Mesoporous TiN microspheres as an efficient polysulfide barrier for lithium — sulfur batteries [J]. Journal of Materials Chemistry A, 2018, 6(29): 14359–14366. DOI: https://doi.org/10.1039/c8ta04920c.

    Article  Google Scholar 

  29. LIAO Ya-qi, XIANG Jing-wei, YUAN Li-xia, et al. Biomimetic root-like TiN/C@S nanofiber as a freestanding cathode with high sulfur loading for lithium-sulfur batteries [J]. ACS Applied Materials & Interfaces, 2018, 10(44): 37955–37962. DOI: https://doi.org/10.1021/acsami.8b11118.

    Article  Google Scholar 

  30. FEI Ban, ZHANG Chao-qi, CAI Dao-ping, et al. Hierarchical nanoreactor with multiple adsorption and catalytic sites for robust lithium-sulfur batteries [J]. ACS Nano, 2021, 15(4): 6849–6860. DOI: https://doi.org/10.1021/acsnano.0c10603.

    Article  Google Scholar 

  31. QIAO Zhen-song, ZHANG Ying-gan, MENG Zhao-hui, et al. Anchoring polysulfides and accelerating redox reaction enabled by Fe-based compounds in lithium-sulfur batteries [J]. Advanced Functional Materials, 2021, 31(21): 2100970. DOI: https://doi.org/10.1002/adfm.202100970.

    Article  Google Scholar 

  32. WANG Si-zhe, FENG Shao-pei, LIANG Jian-wen, et al. Insight into MoS2-MoN heterostructure to accelerate polysulfide conversion toward high-energy-density lithium-sulfur batteries [J]. Advanced Energy Materials, 2021, 11(11): 2003314. DOI: https://doi.org/10.1002/aenm.202003314.

    Article  Google Scholar 

  33. XIE Jin, LI Bo-quan, PENG Hong-jie, et al. Implanting atomic cobalt within mesoporous carbon toward highly stable lithium-sulfur batteries [J]. Advanced Materials, 2019, 31(43): 1903813. DOI: https://doi.org/10.1002/adma.201903813.

    Article  Google Scholar 

  34. CHEN Jun-mei, ZOU Kai-yi, DING Pan, et al. Conjugated cobalt polyphthalocyanine as the elastic and reprocessable catalyst for flexible Li-CO2 batteries [J]. Advanced Materials, 2019, 31(2): 1805484. DOI: https://doi.org/10.1002/adma.201805484.

    Article  Google Scholar 

  35. ROY S, REISNER E. Visible-light-driven CO2 reduction by mesoporous carbon nitride modified with polymeric cobalt phthalocyanine [J]. Angewandte Chemie International Edition, 2019, 58(35): 12180–12184. DOI: https://doi.org/10.1002/anie.201907082.

    Article  Google Scholar 

  36. FANG Ruo-pian, ZHAO Shi-yong, PEI Song-feng, et al. Toward more reliable lithium-sulfur batteries: An all-graphene cathode structure [J]. ACS Nano, 2016, 10(9): 8676–8682. DOI: https://doi.org/10.1021/acsnano.6b04019.

    Article  Google Scholar 

  37. SONG Jiang-xuan, YU Zhao-xin, GORDIN M L, et al. Advanced sulfur cathode enabled by highly crumpled nitrogen-doped graphene sheets for high-energy-density lithium-sulfur batteries [J]. Nano Letters, 2016, 16(2): 864–870. DOI: https://doi.org/10.1021/acs.nanolett.5b03217.

    Article  Google Scholar 

  38. QIU Yong-cai, LI Wan-fei, ZHAO Wen, et al. High-rate, ultralong cycle-life lithium/sulfur batteries enabled by nitrogen-doped graphene [J]. Nano Letters, 2014, 14(8): 4821–4827. DOI: https://doi.org/10.1021/nl5020475.

    Article  Google Scholar 

  39. YANG Shao-xuan, YU Yi-huan, DOU Mei-ling, et al. Edge-functionalized polyphthalocyanine networks with high oxygen reduction reaction activity [J]. Journal of the American Chemical Society, 2020, 142(41): 17524–17530. DOI: https://doi.org/10.1021/jacs.0c07249.

    Article  Google Scholar 

  40. LIU Ya-zhi, LI Gao-ran, CHEN Zhong-wei, et al. CNT-threaded N-doped porous carbon film as binder-free electrode for high-capacity supercapacitor and Li-S battery [J]. Journal of Materials Chemistry A, 2017, 5(20): 9775–9784. DOI: https://doi.org/10.1039/c7ta01526g.

    Article  Google Scholar 

  41. HAN Xu, ZHANG Ze-yun, XU Xue-fei. Single atom catalysts supported on N-doped graphene toward fast kinetics in Li-S batteries: A theoretical study [J]. Journal of Materials Chemistry A, 2021, 9(20): 12225–12235. DOI: https://doi.org/10.1039/d1ta01948a.

    Article  Google Scholar 

  42. WEI Lei, LI Wan-long, ZHAO Teng, et al. Cobalt nanoparticles shielded in N-doped carbon nanotubes for high areal capacity Li-S batteries [J]. Chemical Communications, 2020, 56(20): 3007–3010. DOI: https://doi.org/10.1039/c9cc08218b.

    Article  Google Scholar 

  43. YAN Wei-xi, CHEN Shi-pei, WEN Ming, et al. Multicore closely packed ultrathin-MnO2@N-doped carbon-gear yolk-shell micro-nanostructures as highly efficient sulfur hosts for Li-S batteries [J]. Journal of Materials Chemistry A, 2021, 9(4): 2276–2283. DOI: https://doi.org/10.1039/D0TA10714J.

    Article  Google Scholar 

  44. LIU Yan-yan, YAN Li-jing, ZENG Xian-qing, et al. Bio-derived N-doped porous carbon as sulfur hosts for high performance lithium sulfur batteries [J]. Journal of Central South University, 2019, 26(6): 1426–1434. DOI: https://doi.org/10.1007/s11771-019-4098-3.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

TANG Wei, ZHOU Jiang-qi and CHEN Xia undertook the experiment, manuscript writing and revision. XIAO Zi-chun helped to provide SEM images. HAN Ting-ting, CHEN Qi-ming and ZHOU Ya-nan edited the draft of manuscript.

Corresponding author

Correspondence to Wei Tang  (唐伟).

Additional information

Conflict of interest

The authors declare that they have no conflict of interest that could affect the work of this paper.

Foundation item: Project(21905220) supported by the National Natural Science Foundation of China; Project(BK20201190) supported by the Jiangsu Provincial Department of Science and Technology, China; Projects(2018ZDXM-GY-135, 2021JLM-36) supported by the Key Research and Development Plan of Shaanxi Province, China; Project(HG6J003) supported by the Fundamental Research Funds for “Young Talent Support Plan” of Xi’an Jiaotong University, China; Project supported by the “1000-Plan program” of Shaanxi Province, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Zhou, Jq., Xiao, Zc. et al. Promoting reaction kinetics of lithium polysulfides by cobalt polyphthalocyanine derived ultrafine Co nanoparticles mono-dispersed on graphene flakes for Li-S batteries. J. Cent. South Univ. 29, 2940–2955 (2022). https://doi.org/10.1007/s11771-022-5134-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-022-5134-2

Key words

关键词

Navigation