Skip to main content
Log in

Fast-ionic conductor Li2.64(Sc0.9Ti0.1)2(PO4)3 doped PVDF-HFP hybrid gel-electrolyte for lithium ion batteries

适用于锂离子电池的新型复合快离子导体Li2.64(Sc0.9Ti0.1)2(PO4)3聚合物 PVDF-HFP基凝胶电解质

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

With increasing demand on energy density of lithium-ion battery, wide electrochemical window and safety performance are the crucial request for next generation electrolyte. Gel-electrolyte as a pioneer for electrolyte solidization development aims to solve the safety and electrochemical window problems. However, low ionic conductivity and poor physical performance prohibit its further application. Herein, a fast-ionic conductor (Li2.64(Sc0.9Ti0.1)2(PO4)3) (LSTP) was added into poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) base gel-electrolyte to enhance mechanical properties and ionic conductivity. Evidences reveal that LSTP was able to weaken interforce between polymer chains, which increased the ionic conductibility and decreased interface resistance during the cycling significantly. The obtained LiFePO4/hybrid gel-electrolyte/Li-metal coin cell exhibited excellent rate capacity (145 mA·h/g at 1C, 95 mA·h/g at 3C, 28 °C) which presented a potential that can be comparable with commercialized liquid electrolyte system.

摘要

随着锂离子电池对能量密度要求的不断提高,更宽的电化学窗口和更高的安全性能将是下一代 电解质发展的重要方向。凝胶电解质作为电解质固态化发展研究的过渡阶段,在解决安全性问题、拓 宽电化学窗口等方面有着良好的应用前景。然而,较低的离子电导率和较差的力学性能阻碍了凝胶电 解质的进一步应用。为此,将一种快离子导体Li2.64(Sc0.9Ti0.1)2(PO4)3(LSTP)添加到聚偏氟乙烯-六氟丙烯 基(PVDF-HFP)凝胶电解质中,以提高其力学性能和离子导电性。结果表明,LSTP能够削弱聚合物链 间的相互作用力,加强链的热振动,显著提高离子导电性,降低循环过程中的界面电阻。所制备的混 合凝胶电解质锂金属电池具有优异的倍率容量(在28 °C时1C下为145 mA·h/g,3C下为95 mA·h/g),展 现出了可与商品化液体电解质体系相媲美的潜力。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. TANG Lin-bo, LIU Yang, WEI Han-xin, et al. Boosting cell performance of LiNi0.8Co0.1Mn0.1O2 cathode material via structure design [J]. Journal of Energy Chemistry, 2021, 55: 114–123. DOI: https://doi.org/10.1016/j.jechem.2020.06.055.

    Article  Google Scholar 

  2. HUANG Ying-de, YU Rong-tian, MAO Gao-qiang, et al. Unique FeP@C with polyhedral structure in situ coated with reduced graphene oxide as an anode material for lithium ion batteries [J]. Journal of Alloys and Compounds, 2020, 841: 155670. DOI: https://doi.org/10.1016/j.jallcom.2020.155670.

    Article  Google Scholar 

  3. GOODENOUGH J B, KIM Y. Challenges for rechargeable Li batteries [J]. Chemistry of Materials, 2010, 22(3): 587–603. DOI: https://doi.org/10.1021/cm901452z.

    Article  Google Scholar 

  4. BATES J B, DUDNEY N J, NEUDECKER B, et al. Thin-film lithium and lithium-ion batteries [J]. Solid State Ionics, 2000, 135(1–4): 33–45. DOI: https://doi.org/10.1016/S0167-2738(00)00327-1.

    Article  Google Scholar 

  5. ZHANG Jia-feng, WEI Han-xin, CAO Yang, et al. Hierarchical LiMnPO4·Li3V2(PO4)3/C/rGO nanocomposites as superior-rate and long-life cathodes for lithium ion batteries [J]. Journal of Alloys and Compounds, 2018, 769: 332–339. DOI: https://doi.org/10.1016/j.jallcom.2018.07.354.

    Article  Google Scholar 

  6. LI Cong, WANG Zhen-yu, HE Zhen-jiang, et al. An advance review of solid-state battery: Challenges, progress and prospects [J]. Sustainable Materials and Technologies, 2021, 29: e00297. DOI: https://doi.org/10.1016/j.susmat.2021.e00297.

    Article  Google Scholar 

  7. JIANG Zhen, LI Yue-hua, HAN Chao, et al. Raising lithium storage performances of NaTi2(PO4)3 by nitrogen and sulfur dual-doped carbon layer [J]. Journal of the Electrochemical Society, 2020, 167(2): 020550. DOI: https://doi.org/10.1149/1945-7111/ab6c5c.

    Article  Google Scholar 

  8. SONG J Y, WANG Y Y, WAN C C. Review of gel-type polymer electrolytes for lithium-ion batteries [J]. Journal of Power Sources, 1999, 77(2): 183–197. DOI: https://doi.org/10.1016/S0378-7753(98)00193-1.

    Article  Google Scholar 

  9. PANDEY G P, KUMAR Y, HASHMI S A. Ionic liquid incorporated PEO based polymer electrolyte for electrical double layer capacitors: A comparative study with lithium and magnesium systems [J]. Solid State Ionics, 2011, 190(1): 93–98. DOI: https://doi.org/10.1016/j.ssi.2011.03.018.

    Article  Google Scholar 

  10. WANG Yu, LI Bin, JI Jian-ying, et al. A gum-like electrolyte: Safety of a solid, performance of a liquid [J]. Advanced Energy Materials, 2013, 3(12): 1557–1562. DOI: https://doi.org/10.1002/aenm.201300495.

    Article  Google Scholar 

  11. LIU Qiao, LIU Yang-yang, JIAO Xing-xing, et al. Enhanced ionic conductivity and interface stability of hybrid solid-state polymer electrolyte for rechargeable lithium metal batteries [J]. Energy Storage Materials, 2019, 23: 105–111. DOI: https://doi.org/10.1016/j.ensm.2019.05.023.

    Article  Google Scholar 

  12. ZHU Ming, WU Jia-xin, WANG Yue, et al. Recent advances in gel polymer electrolyte for high-performance lithium batteries [J]. Journal of Energy Chemistry, 2019, 37: 126–142. DOI: https://doi.org/10.1016/j.jechem.2018.12.013.

    Article  Google Scholar 

  13. CHEN Ming-zhe, ZHANG Yan-yan, XING Gui-chuan, et al. Electrochemical energy storage devices working in extreme conditions [J]. Energy & Environmental Science, 2021, 14(6): 3323–3351. DOI: https://doi.org/10.1039/D1EE00271F.

    Article  Google Scholar 

  14. SAITO Y, KATAOKA H, STEPHAN A M. Investigation of the conduction mechanisms of lithium gel polymer electrolytes based on electrical conductivity and diffusion coefficient using NMR [J]. Macromolecules, 2001, 34(20): 6955–6958. DOI: https://doi.org/10.1021/ma0102823.

    Article  Google Scholar 

  15. XIAO Wei, LI Xin-hai, WANG Zhi-xing, et al. Study on performances of ZSM-5 doped P(VDF-HFP) based composite polymer electrolyte prepared by steam bath technique [J]. Iranian Polymer Journal, 2012, 21(8): 481–488. DOI: https://doi.org/10.1007/s13726-012-0052-z.

    Article  Google Scholar 

  16. CHEN Guang-hai, ZHANG Fan, ZHOU Zhi-ming, et al. A flexible dual-ion battery based on PVDF-HFP-modified gel polymer electrolyte with excellent cycling performance and superior rate capability [J]. Advanced Energy Materials, 2018, 8(25): 1801219. DOI: https://doi.org/10.1002/aenm.201801219.

    Article  Google Scholar 

  17. PU Wei-hua, HE Xiang-ming, WANG Li, et al. Preparation of P(AN-MMA) microporous membrane for Li-ion batteries by phase inversion [J]. Journal of Membrane Science, 2006, 280(1–2): 6–9. DOI: https://doi.org/10.1016/j.memsci.2006.05.028.

    Article  Google Scholar 

  18. LIU Yang-yang, XU Xie-yu, SADD M, et al. Insight into the critical role of exchange current density on electrodeposition behavior of lithium metal [J]. Advanced Science, 2021, 8(5): 2003301. DOI: https://doi.org/10.1002/advs.202003301.

    Article  Google Scholar 

  19. WAN Jia-yu, XIE Jin, KONG Xian, et al. Ultrathin, flexible, solid polymer composite electrolyte enabled with aligned nanoporous host for lithium batteries [J]. Nature Nanotechnology, 2019, 14(7): 705–711. DOI: https://doi.org/10.1038/s41565-019-0465-3.

    Article  Google Scholar 

  20. CAI Ye-zheng, HUANG De-quan, MA Zhao-ling, et al. Construction of highly conductive network for improving electrochemical performance of lithium iron phosphate [J]. Electrochimica Acta, 2019, 305: 563–570. DOI: https://doi.org/10.1016/j.electacta.2019.02.114.

    Article  Google Scholar 

  21. ARBI K, TABELLOUT M, LAZARRAGA M G, et al. Non-Arrhenius conductivity in the fast lithium conductor Li1.2Ti1.8Al0.2(PO4)3: A 7Li NMR and electric impedance study [J]. Physical Review B, 2005, 72(9): 094302. DOI: https://doi.org/10.1103/physrevb.72.094302.

    Article  Google Scholar 

  22. BACHMAN J C, MUY S, GRIMAUD A, et al. Inorganic solid-state electrolytes for lithium batteries: Mechanisms and properties governing ion conduction [J]. Chemical Reviews, 2016, 116(1): 140–162. DOI: https://doi.org/10.1021/acs.chemrev.5b00563.

    Article  Google Scholar 

  23. CHEN Ming-zhe, HUA Wei-bo, XIAO Jin, et al. Activating a multielectron reaction of NASICON-structured cathodes toward high energy density for sodium-ion batteries [J]. Journal of the American Chemical Society, 2021, 143(43): 18091–18102. DOI: https://doi.org/10.1021/jacs.1c06727.

    Article  Google Scholar 

  24. XIANG Yan-hong, LI Jian, WU Xian-wen, et al. Synthesis and characterization of manganese-rich transition metal carbonate precursor in the presence of ethanol [J]. Advanced Powder Technology, 2015, 26(6): 1712–1718. DOI: https://doi.org/10.1016/j.apt.2015.10.012.

    Article  Google Scholar 

  25. ARBI K, HOELZEL M, KUHN A, et al. Structural factors that enhance lithium mobility in fast-ion Li(1+x)Ti(2−x)Al(x)(PO4)3 (0≼x≼0.4) conductors investigated by neutron diffraction in the temperature range 100–500 K [J]. Inorganic Chemistry, 2013, 52(16): 9290–9296. DOI: https://doi.org/10.1021/ic400577v.

    Article  Google Scholar 

  26. ORTIZ G F, LÓPEZ M C, LAVELA P, et al. Improved lithium-ion transport in NASICON-type lithium titanium phosphate by calcium and iron doping [J]. Solid State Ionics, 2014, 262: 573–577. DOI: https://doi.org/10.1016/j.ssi.2013.09.012.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

ZHENG Jun-chao and HE Zhen-jiang provided the concept and edited the draft of manuscript. LI Cong conducted the literature review, carried out the experiment tests and collected data. WANG Zhen-yu analyzed the measured data and wrote the first draft of the manuscript. HUANG Ying-de provided the material synthesis technical support. YAN Cheng, MAO Jing and DAI Ke-hua edited the draft of manuscript. All authors replied to reviewers’ comments and revised the final version.

Corresponding author

Correspondence to Jun-chao Zheng  (郑俊超).

Additional information

Conflict of interest

WANG Zhen-yu, LI Cong, HUANG Ying-de, HE Zhen-jiang, YAN Cheng, MAO Jing, DAI Ke-hua and ZHENG Jun-chao declare that they have no conflict of interest.

Foundation item: Projects(51974368, 51774333) supported by the National Natural Science Foundation of China; Project(2020JJ2048) supported by the Hunan Provincial Natural Science Foundation of China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Zy., Li, C., Huang, Yd. et al. Fast-ionic conductor Li2.64(Sc0.9Ti0.1)2(PO4)3 doped PVDF-HFP hybrid gel-electrolyte for lithium ion batteries. J. Cent. South Univ. 29, 2980–2990 (2022). https://doi.org/10.1007/s11771-022-5128-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-022-5128-0

Key words

关键词

Navigation