Skip to main content
Log in

Evolution mechanism of active sites for selective catalytic reduction of NOx with NH3 over Fe-ZSM-5 catalysts doped by Ce/Cu

Ce/Cu掺杂Fe-ZSM-5 催化剂NH3选择性催化还原NOx的活性位点演化机理

  • The 2nd World Congress on Internal Combustion Engines
  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Fe-ZSM-5 catalysts modified by Cu and Ce by aqueous solution ion-exchange and incipient wetness impregnation methods were tested in the selective catalytic reduction of NOx with NH3. A variety of characterization techniques (NH3-SCO, BET, XRD, XPS, UV-Vis, NH3-TPD, H2-TPR) were used to explore the changes of the active sites, acid sites and pore structure of the catalyst. It was found that the dispersion of active Cu species and Fe species had great influences on the catalytic activity in the whole catalytic process. The Cu doping into the Fe-ZSM-5 catalyst produced new active species, isolated Cu ions and CuO particles, resulting in the improved low-temperature catalytic activity. However, the NH3 oxidation was enhanced, and part of the Fe3+ active sites and more Brønsted acidic sites in the catalyst were occupied by Cu species, which causes the decrease of the high-temperature activity. The recovery of high-temperature activity could be attributed to the recovery of active Cu species and Fe species promoted by Ce and the promotion of active species dispersion. The results provide theoretical support for adjusting the active window of Fe-based SCR catalyst by multi-metal doping.

摘要

通过水溶液离子交换法和初湿浸渍法制备Cu和Ce改性的Fe-ZSM-5催化剂,研究其在NH3选择 性催化还原NOx中的作用。通过表征技术(NH3-SCO,BET,XRD,XPS,UV-Vis,NH3-TPD,H2-TPR) 探讨了催化剂活性位、酸性位和孔结构的变化,发现活性Cu物种和Fe 物种的分散情况是影响整个催 化过程中催化活性的重要因素。Fe-ZSM-5 催化剂中Cu 的掺杂带来了新的活性物种,孤立Cu 离子和 CuO颗粒,从而改善了低温催化活性。然而,催化剂的氨氧化作用也随之加强,催化剂中的部分Fe3+ 活性位和Brønsted 酸性位被Cu物种取代,这导致了高温活性的降低。进一步掺杂Ce 后,高温活性得 到恢复,可以归因于Ce 促进了活性Cu 物种和Fe 物种的高度分散。这些发现为多金属掺杂调节铁基 SCR催化剂的活性窗口提供了理论支持。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. LIAN Wen-liu, REN Feng-lian, LIU Qi, et al. Evaluation of metal-doped manganese oxide octahedral molecular sieves in catalytic reduction of NOx from cigarette mainstream smoke [J]. Journal of Central South University, 2012, 19(4): 918–922. DOI: https://doi.org/10.1007/s11771-012-1093-3.

    Article  Google Scholar 

  2. WANG Pan, YI Jing, GU Wen-ye, et al. The influence of xMnyCe/γ-Al2O3 on NOx catalysts on the properties of NOx storage and reduction over Pt-Ce-Ba/γ-Al2O3 catalysts [J]. Chemical Engineering Journal, 2017, 325: 700–707. DOI: https://doi.org/10.1016/j.cej.2017.05.050.

    Article  Google Scholar 

  3. LIU Qian, BIAN Ce, MING Shu-jun, et al. The opportunities and challenges of iron-zeolite as NH3-SCR catalyst in purification of vehicle exhaust [J]. Applied Catalysis A: General, 2020, 607: 117865. DOI: https://doi.org/10.1016/j.apcata.2020.117865.

    Article  Google Scholar 

  4. WANG Pan, JIN Miao-miao, YU Dan, et al. Evolution mechanism of N2O for the selective catalytic reduction of NOx by NH3 over Cu-SSZ-13 assisted Fe-BEA catalysts [J]. Catalysis Letters, 2021, 151(11): 3381–3395. DOI: https://doi.org/10.1007/s10562-021-03588-7.

    Article  Google Scholar 

  5. YAO Jie, ZHONG Zhao-ping. TiO2 preparation by improved homogeneous precipitation and application in SCR catalyst [J]. Journal of Central South University, 2016, 23(9): 2139–2145. DOI: https://doi.org/10.1007/s11771-016-3270-2.

    Article  Google Scholar 

  6. USUI T, LIU Zhen-dong, IBE S, et al. Improve the hydrothermal stability of Cu-SSZ-13 zeolite catalyst by loading a small amount of Ce [J]. ACS Catalysis, 2018, 8(10): 9165–9173. DOI: https://doi.org/10.1021/acscatal.8b01949.

    Article  Google Scholar 

  7. KUMAR M S, SCHWIDDER M, GRÜNERT W, et al. Selective reduction of NO with Fe-ZSM-5 catalysts of low Fe content: Part II. Assessing the function of different Fe sites by spectroscopic in situ studies [J]. Journal of Catalysis, 2006, 239(1): 173–186. DOI: https://doi.org/10.1016/j.jcat.2006.01.024.

    Article  Google Scholar 

  8. SHWAN S, JANSSON J, KORSGREN J, et al. Kinetic modeling of H-BEA and Fe-BEA as NH3-SCR catalysts—Effect of hydrothermal treatment [J]. Catalysis Today, 2012, 197(1): 24–37. DOI: https://doi.org/10.1016/j.cattod.2012.06.014.

    Article  Google Scholar 

  9. WANG Pan, YU Dan, ZHANG Li-dong, et al. Evolution mechanism of NOx in NH3-SCR reaction over Fe-ZSM-5 catalyst: Species-performance relationships [J]. Applied Catalysis A: General, 2020, 607: 117806. DOI: https://doi.org/10.1016/j.apcata.2020.117806.

    Article  Google Scholar 

  10. CHEN Lin, JANSSENS T V W, VENNESTRØM P N R, et al. A complete multisite reaction mechanism for low-temperature NH3-SCR over Cu-CHA [J]. ACS Catalysis, 2020, 10(10): 5646–5656. DOI: https://doi.org/10.1021/acscatal.0c00440.

    Article  Google Scholar 

  11. YE Qing, WANG Li-feng, YANG R T. Activity, propene poisoning resistance and hydrothermal stability of copper exchanged chabazite-like zeolite catalysts for SCR of NO with ammonia in comparison to Cu/ZSM-5 [J]. Applied Catalysis A: General, 2012, 427–428: 24–34. DOI: https://doi.org/10.1016/j.apcata.2012.03.026.

    Article  Google Scholar 

  12. WANG Di, ZHANG Li, KAMASAMUDRAM K, et al. In situ-DRIFTS study of selective catalytic reduction of NOx by NH3 over Cu-exchanged SAPO-34 [J]. ACS Catalysis, 2013, 3(5): 871–881. DOI: https://doi.org/10.1021/cs300843k.

    Article  Google Scholar 

  13. MORENO-GONZÁLEZ M, HUESO B, BORONAT M, et al. Ammonia-containing species formed in Cu-chabazite as per in situ EPR, solid-state NMR, and DFT calculations [J]. The Journal of Physical Chemistry Letters, 2015, 6(6): 1011–1017. DOI: https://doi.org/10.1021/acs.jpclett.5b00069.

    Article  Google Scholar 

  14. HAMOUD H I, VALTCHEV V, DATURI M. Selective catalytic reduction of NOx over Cu- and Fe-exchanged zeolites and their mechanical mixture [J]. Applied Catalysis B: Environmental, 2019, 250: 419–428. DOI: https://doi.org/10.1016/j.apcatb.2019.02.022.

    Article  Google Scholar 

  15. ZHAO Hua-wang, LI Hui-sheng, LI Xiang-hui, et al. The promotion effect of Fe to Cu-SAPO-34 for selective catalytic reduction of NOx with NH3 [J]. Catalysis Today, 2017, 297: 84–91. DOI: https://doi.org/10.1016/j.cattod.2017.05.060.

    Article  Google Scholar 

  16. GONZÁLEZ J M, VILLA A L. High temperature SCR over Cu-SSZ-13 and Cu-SSZ-13 + Fe-SSZ-13: Activity of Cu2+ and [CuOH]1+ sites and the apparent promoting effect of adding Fe into Cu-SSZ-13 catalyst [J]. Catalysis Letters, 2021, 151(10): 3011–3019. DOI: https://doi.org/10.1007/s10562-021-03550-7.

    Article  Google Scholar 

  17. JOSHI S Y, KUMAR A, LUO Jin-yong, et al. New insights into the mechanism of NH3-SCR over Cu- and Fe-zeolite catalyst: Apparent negative activation energy at high temperature and catalyst unit design consequences [J]. Applied Catalysis B: Environmental, 2018, 226: 565–574. DOI: https://doi.org/10.1016/j.apcatb.2017.12.076.

    Article  Google Scholar 

  18. MA Shi-bo, TAN Huan-sheng, LI Yu-shi, et al. Excellent low-temperature NH3-SCR NO removal performance and enhanced H2O resistance by Ce addition over the Cu0.02Fe0.2CeyTi1−yOx (y=0.1, 0.2, 0.3) catalysts [J]. Chemosphere, 2020, 243: 125309. DOI: https://doi.org/10.1016/j.chemosphere.2019.125309.

    Article  Google Scholar 

  19. LI Jun, JIA Li-wei, JIN Wei-yang, et al. Effects of Ce-doping on the structure and NH3-SCR activity of Fe/beta catalyst [J]. Rare Metal Materials and Engineering, 2015, 44(7): 1612–1616. DOI: https://doi.org/10.1016/S1875-5372(15)30102-8.

    Article  Google Scholar 

  20. FAN Jie, NING Ping, WANG Yan-cai, et al. Significant promoting effect of Ce or La on the hydrothermal stability of Cu-SAPO-34 catalyst for NH3-SCR reaction [J]. Chemical Engineering Journal, 2019, 369: 908–919. DOI: https://doi.org/10.1016/j.cej.2019.03.049.

    Article  Google Scholar 

  21. WANG Pan, YU Dan, WU Gang, et al. NOx adsorption and desorption of a Mn-incorporated NSR catalyst Pt/Ba/Ce/xMn/γ-Al2O3 [J]. Environmental Science and Pollution Research, 2019, 26(27): 27888–27896. DOI: https://doi.org/10.1007/s11356-019-05847-y.

    Article  Google Scholar 

  22. SHI Xiao-yan, WANG Ying-jie, SHAN Yu-long, et al. Investigation of the common intermediates over Fe-ZSM-5 in NH3-SCR reaction at low temperature by in situ DRIFTS [J]. Journal of Environmental Sciences, 2020, 94: 32–39. DOI: https://doi.org/10.1016/j.jes.2020.02.029.

    Article  Google Scholar 

  23. XUE Hong-yan, GUO Xiao-ming, MENG Tao, et al. Poisoning effect of K with respect to Cu/ZSM-5 used for NO reduction [J]. Colloid and Interface Science Communications, 2021, 44: 100465. DOI: https://doi.org/10.1016/j.colcom.2021.100465.

    Article  Google Scholar 

  24. YUAN Qing, ZHANG Zhen-yi, YU Nai-sen, et al. Cu-ZSM-5 zeolite supported on SiC monolith with enhanced catalytic activity for NH3-SCR [J]. Catalysis Communications, 2018, 108: 23–26. DOI: https://doi.org/10.1016/j.catcom.2018.01.030.

    Article  Google Scholar 

  25. LI Wei, CHEN Ling-shan, LIU Xiong, et al. Study on the Cu-ZSM-5 catalyst for SCR system of diesel engine [J]. Advanced Materials Research, 2012, 532–533: 82–86. DOI: https://doi.org/10.4028/www.scientific.net/amr.532-533.82.

    Google Scholar 

  26. JOUINI H, MEJRI I, PETITTO C, et al. Characterization and NH3-SCR reactivity of Cu-Fe-ZSM-5 catalysts prepared by solid state ion exchange: The metal exchange order effect [J]. Microporous and Mesoporous Materials, 2018, 260: 217–226. DOI: https://doi.org/10.1016/j.micromeso.2017.10.051.

    Article  Google Scholar 

  27. HAN Shuai, CHENG Jin, YE Qing, et al. Ce doping to Cu-SAPO-18: Enhanced catalytic performance for the NH3-SCR of NO in simulated diesel exhaust [J]. Microporous and Mesoporous Materials, 2019, 276: 133–146. DOI: https://doi.org/10.1016/j.micromeso.2018.09.027.

    Article  Google Scholar 

  28. ZHANG Tao, QIN Xuan, PENG Yue, et al. Effect of Fe precursors on the catalytic activity of Fe/SAPO-34 catalysts for N2O decomposition [J]. Catalysis Communications, 2019, 128: 105706. DOI: https://doi.org/10.1016/j.catcom.2019.05.013.

    Article  Google Scholar 

  29. HADJIIVANOV K I, KANTCHEVA M M, KLISSURSKI D G. IR study of CO adsorption on Cu-ZSM-5 and CuO/SiO2 catalysts: σ and π components of the Cu+-CO bond [J]. J Chem Soc, Faraday Trans, 1996, 92(22): 4595–4600. DOI: https://doi.org/10.1039/ft9969204595.

    Article  Google Scholar 

  30. BIN Feng, SONG Chong-lin, LV Gang, et al. Structural characterization and selective catalytic reduction of nitrogen oxides with ammonia: A comparison between Co/ZSM-5 and Co/SBA-15 [J]. The Journal of Physical Chemistry C, 2012, 116(50): 26262–26274. DOI: https://doi.org/10.1021/jp303830x.

    Article  Google Scholar 

  31. XING Xin, LI Na, CHENG Jie, et al. Synergistic effects of Cu species and acidity of Cu-ZSM-5 on catalytic performance for selective catalytic oxidation of n-butylamine [J]. Journal of Environmental Sciences, 2020, 96: 55–63. DOI: https://doi.org/10.1016/j.jes.2020.03.015.

    Article  Google Scholar 

  32. DEVADAS M, KRÖCHER O, ELSENER M, et al. Characterization and catalytic investigation of Fe-ZSM5 for urea-SCR [J]. Catalysis Today, 2007, 119(1–4): 137–144. DOI: https://doi.org/10.1016/j.cattod.2006.08.018.

    Article  Google Scholar 

  33. GUAN Bin, JIANG Han, PENG Xue-song, et al. Promotional effect and mechanism of the modification of Ce on the enhanced NH3-SCR efficiency and the low temperature hydrothermal stability over Cu/SAPO-34 catalysts [J]. Applied Catalysis A: General, 2021, 617: 118110. DOI: https://doi.org/10.1016/j.apcata.2021.118110.

    Article  Google Scholar 

  34. HAN Shuai, YE Qing, CHENG Shui-yuan, et al. Effect of the hydrothermal aging temperature and Cu/Al ratio on the hydrothermal stability of CuSSZ-13 catalysts for NH3-SCR [J]. Catalysis Science & Technology, 2017, 7(3): 703–717. DOI: https://doi.org/10.1039/c6cy02555b.

    Article  Google Scholar 

  35. MA Yuan-yuan, LI Zhi-fang, ZHAO Nan, et al. One-pot synthesis of Cu-Ce co-doped SAPO-5/34 hybrid crystal structure catalysts for NH3-SCR reaction with SO2 resistance [J]. Journal of Rare Earths, 2021, 39(10): 1217–1223. DOI: https://doi.org/10.1016/j.jre.2020.07.028.

    Article  Google Scholar 

  36. QI G, YANG R T. Performance and kinetics study for low-temperature SCR of NO with NH3 over MnOx-CeO2 catalyst [J]. Journal of Catalysis, 2003, 217(2): 434–441. DOI: https://doi.org/10.1016/S0021-9517(03)00081-2.

    Article  Google Scholar 

  37. XIA Yan, ZHAN Wang-cheng, GUO Yun, et al. Fe-beta zeolite for selective catalytic reduction of NOx with NH3: Influence of Fe content [J]. Chinese Journal of Catalysis, 2016, 37(12): 2069–2078. DOI: https://doi.org/10.1016/S1872-2067(16)62534-2.

    Article  Google Scholar 

  38. CHEN Zhi-qiang, LIU Li, QU Hong-xia, et al. Migration of cations and shell functionalization for Cu-Ce-La/SSZ-13@ZSM-5: The contribution to activity and hydrothermal stability in the selective catalytic reduction reaction [J]. Journal of Catalysis, 2020, 392: 217–230. DOI: https://doi.org/10.1016/j.jcat.2020.10.005.

    Article  Google Scholar 

  39. SCHWIDDER M, KUMAR M S, KLEMENTIEV K, et al. Selective reduction of NO with Fe-ZSM-5 catalysts of low Fe content: I. Relations between active site structure and catalytic performance [J]. Journal of Catalysis, 2005, 231(2): 314–330. DOI: https://doi.org/10.1016/j.jcat.2005.01.031.

    Article  Google Scholar 

  40. XIE Shang-zhi, LI Lu-lu, JIN Li-jian, et al. Low temperature high activity of M (M = Ce, Fe, Co, Ni) doped M-Mn/TiO2 catalysts for NH3-SCR and in situ DRIFTS for investigating the reaction mechanism [J]. Applied Surface Science, 2020, 515: 146014. DOI: https://doi.org/10.1016/j.apsusc.2020.146014.

    Article  Google Scholar 

  41. SHAN Yu-long, SUN Yu, DU Jin-peng, et al. Hydrothermal aging alleviates the inhibition effects of NO2 on Cu-SSZ-13 for NH3-SCR [J]. Applied Catalysis B: Environmental, 2020, 275: 119105. DOI: https://doi.org/10.1016/j.apcatb.2020.119105.

    Article  Google Scholar 

  42. XU Hai-di, WANG Yun, CAO Yi, et al. Catalytic performance of acidic zirconium-based composite oxides monolithic catalyst on selective catalytic reduction of NOx with NH3 [J]. Chemical Engineering Journal, 2014, 240: 62–73. DOI: https://doi.org/10.1016/j.cej.2013.11.053.

    Article  Google Scholar 

  43. KIEGER S, DELAHAY G, COQ B, et al. Selective catalytic reduction of nitric oxide by ammonia over Cu-FAU catalysts in oxygen-rich atmosphere [J]. Journal of Catalysis, 1999, 183(2): 267–280. DOI: https://doi.org/10.1006/jcat.1999.2398.

    Article  Google Scholar 

  44. PENG Cheng, YAN Ran, PENG Hong-gen, et al. One-pot synthesis of layered mesoporous ZSM-5 plus Cu ion-exchange: Enhanced NH3-SCR performance on Cu-ZSM-5 with hierarchical pore structures [J]. Journal of Hazardous Materials, 2020, 385: 121593. DOI: https://doi.org/10.1016/j.jhazmat.2019.121593.

    Article  Google Scholar 

  45. METKAR P S, HAROLD M P, BALAKOTAIAH V. Experimental and kinetic modeling study of NH3-SCR of NOx on Fe-ZSM-5, Cu-chabazite and combined Fe- and Cu-zeolite monolithic catalysts [J]. Chemical Engineering Science, 2013, 87: 51–66. DOI: https://doi.org/10.1016/j.ces.2012.09.008.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The overarching research goals were developed by ZHANG Yu-bo, WANG Pan, and YU Dan. ZHANG Yu-bo and YU Dan analyzed the measured data. ZHAO Hong-yu and LYU Xing-lei analyzed the results. The initial draft of the manuscript was written by ZHANG Yu-bo and WANG Pan. All authors replied to reviewers’ comments and revised the final version.

Corresponding author

Correspondence to Pan Wang  (王攀).

Additional information

Conflict of interest

ZHANG Yu-bo, WANG Pan, YU Dan, ZHAO Hong-yu, LYU Xing-lei, LEI Li-li declare that they have no conflict of interest.

Foundation item: Project(51906089) supported by the National Natural Science Foundation of China; Project(NELMS2018A18) supported by the National Engineering Laboratory for Mobile Source Emission Control Technology, China: Project(XNYQ2021-002) supported by the Provincial Engineering Research Center for New Energy Vehicle Intelligent Control and Simulation Test Technology of Sichuan, China; Project(GY2020016) supported by the Zhenjiang City Key R&D Program, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Yb., Wang, P., Yu, D. et al. Evolution mechanism of active sites for selective catalytic reduction of NOx with NH3 over Fe-ZSM-5 catalysts doped by Ce/Cu. J. Cent. South Univ. 29, 2239–2252 (2022). https://doi.org/10.1007/s11771-022-5077-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-022-5077-7

Key words

关键词

Navigation