Skip to main content
Log in

A critical review on the Portevin-Le Chatelier effect in aluminum alloys

铝合金中Portevin-Le Chatelier效应研究概述: 内在机理及微观调控

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The plastic deformation showing instability has been a subject receiving considerable attention for centuries due to its importance in many industrial processes. For Al alloys, the major instability is the Portevin-Le Chatelier (PLC) effect that appears within a certain region of strain, strain rate and temperature. It manifests itself on the stress — strain curve as serrations associating with the rapid accumulation of plastic deformation within inclined slip bands. The PLC effect has severe practical consequences, which damages the surface quality after the sheet metal forming process and threatens the tensile ductility. Therefore, it is crucial to investigate the fundamental mechanisms underlying the PLC effect and in particular to investigate how it can be tempered by tailoring the material microstructure. In this paper, we review the common interpretations of the PLC effect and summarize the experimental results of the effects of the precipitation and the grain refinement, two conventional strengthening methodologies in Al alloys, on the serrated plastic flow. The effectiveness of solute atom clusters in suppressing the PLC effect is emphasized.

摘要

在应力作用下金属材料的塑性失稳现象对构件的安全服役至关重要, 这也一直是科学和工程领域关心的重要问题之一. 铝合金作为应用广泛的轻质金属结构材料, 普遍存在由Portevin-Le Chatelier (PLC)效应引起的塑性失稳现象. 不同于结构设计和应力状态导致的屈曲失稳, PLC效应是材料的本征特性, 起源于可动溶质原子反复钉扎位错与位错脱钉扎之间的动态交互作用; 宏观表现为, 在特定的应变速率和温度区间内, 局部变形带会突发形核并迅速扩展, 在应力−应变曲线上对应出现应力波动. 通常, PLC效应导致的应力波动幅值有限, 但与其伴生的负应变速率敏感性会降低材料延性, 且局部滑移特性会破坏钣金成形金属的表面质量, 在汽车蒙皮等注重外观的应用中须加以规避. 因此, 探索铝合金中PLC效应的微观机理, 以及如何通过微观结构人为调控PLC效应, 具有重要的意义. 本文对PLC效应及其微观机理进行概括性的介绍, 并总结了铝合金中两种主要微观结构调控方式(析出调 控和细晶调控)对于PLC效应的作用规律. 需特别指出, 作为新型的强化原子结构, 高密度的溶质团簇 不仅可以打破强度—延性的倒置关系, 还展现出比析出相更为有效的PLC效应抑制作用.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. WEISS J, RHOUMA W B, RICHETON T, et al. From mild to wild fluctuations in crystal plasticity [J]. Physical Review Letters, 2015, 114(10): 105504. DOI: https://doi.org/10.1103/PhysRevLett.114.105504.

    Article  Google Scholar 

  2. ZHANG Peng, SALMAN O U, ZHANG Jin-yu, et al. Taming intermittent plasticity at small scales [J]. Acta Materialia, 2017, 128: 351–364. DOI: https://doi.org/10.1016/j.actamat.2017.02.039.

    Article  Google Scholar 

  3. ZHANG Peng, BIAN Jian-jun, ZHANG Jin-yu, et al. Platelike precipitate effects on plasticity of Al-Cu alloys at micrometer to sub-micrometer scales [J]. Materials & Design, 2020, 188: 108444. DOI: https://doi.org/10.1016/j.matdes.2019.108444.

    Article  Google Scholar 

  4. DIMIDUK D M, WOODWARD C, LESAR R, et al. Scale-free intermittent flow in crystal plasticity [J]. Science, 2006, 312(5777): 1188–1190. DOI: https://doi.org/10.1126/science.1123889.

    Article  Google Scholar 

  5. ZHANG Peng, BIAN Jian-jun, YANG Chong, et al. Platelike precipitate effects on plasticity of Al-Cu micro-pillar: {100}-interfacial slip [J]. Materialia, 2019, 7: 100416. DOI: https://doi.org/10.1016/j.mtla.2019.100416.

    Article  Google Scholar 

  6. BECKER R, OROWAN E. Sudden expansion of zinc crystals [J]. Zeitschrift Fur Physik, 1932, 79(9, 10): 566–572. DOI: https://doi.org/10.1007/Bf01330508

    Article  Google Scholar 

  7. TINDER R F, TRZIL J P. Millimicroplastic burst phenomena in zinc monocrystals [J]. Acta Metallurgica, 1973, 21(7): 975–989. DOI: https://doi.org/10.1016/0001-6160(73)90154-5.

    Article  Google Scholar 

  8. WEISS J, BEN RHOUMA W, DESCHANEL S, et al. Plastic intermittency during cyclic loading: From dislocation patterning to microcrack initiation [J]. Physical Review Materials, 2019, 3(2): 023603. DOI: https://doi.org/10.1103/physrevmaterials.3.023603.

    Article  Google Scholar 

  9. CHATTERJEE K, BEAUDOIN A J, PAGAN D C, et al. Intermittent plasticity in individual grains: A study using high energy X-ray diffraction [J]. Structural Dynamics (Melville, N Y), 2019, 6(1): 014501. DOI: https://doi.org/10.1063/1.5068756.

    Article  Google Scholar 

  10. ZHANG P, SALMAN O U, WEISS J, et al. Variety of scaling behaviors in nanocrystalline plasticity [J]. Physical Review E, 2020, 102(2): 023006. DOI: https://doi.org/10.1103/physreve.102.023006.

    Article  Google Scholar 

  11. OVASKA M, LAURSON L, ALAVA M J. Quenched pinning and collective dislocation dynamics [J]. Scientific Reports, 2015, 5: 10580. DOI: https://doi.org/10.1038/srep10580.

    Article  Google Scholar 

  12. WEISS J, ZHANG Peng, SALMAN O U, et al. Fluctuations in crystalline plasticity [J]. Comptes Rendus Physique, 2021, 22(S3): 163–199. DOI: https://doi.org/10.5802/crphys.51.

    Article  Google Scholar 

  13. le CHATELIER A. Influence du temps et de la température sur les essais au choc [J]. Revue de Métallurgie, 1909, 6(8): 914–917. DOI: https://doi.org/10.1051/metal/190906080914.

    Article  Google Scholar 

  14. PORTEVIN A, le CHATELIER F. Sur un phénomène observé lors de l’essai de traction d’alliages en cours de transformation [J]. Compt Rend Acad Sci Paris, 1923, 176: 507–510.

    Google Scholar 

  15. PORTEVIN A, le CHATELIER F. Heat treatment of aluminum-copper alloys [J]. Transactions of the American Society of Steel Treating, 1924, 5: 457–478.

    Google Scholar 

  16. BALÍK J, LUKÁČ P, KUBIN L P. Inverse critical strains for jerky flow in Al-Mg alloys [J]. Scripta Materialia, 2000, 42(5): 465–471. DOI: https://doi.org/10.1016/S1359-6462(99)00373-5.

    Article  Google Scholar 

  17. LEBEDKINA T A, LEBYODKIN M A. Effect of deformation geometry on the intermittent plastic flow associated with the Portevin-Le Chatelier effect [J]. Acta Materialia, 2008, 56(19): 5567–5574. DOI: https://doi.org/10.1016/j.actamat.2008.07.025.

    Article  Google Scholar 

  18. CHO C H, SON H W, LEE J C, et al. Effects of high Mg content and processing parameters on Portevin-Le Chatelier and negative strain rate sensitivity effects in Al-Mg alloys [J]. Materials Science and Engineering A, 2020, 779: 139151. DOI: https://doi.org/10.1016/j.msea.2020.139151.

    Article  Google Scholar 

  19. JOBBA M, MISHRA R K, NIEWCZAS M. Flow stress and work-hardening behaviour of Al-Mg binary alloys [J]. International Journal of Plasticity, 2015, 65: 43–60. DOI: https://doi.org/10.1016/j.ijplas.2014.08.006.

    Article  Google Scholar 

  20. HAN Guo-ming, CUI Chuan-yong, GU Yue-feng, et al. Investigation of temperature dependence of PLC effect in a nickel base superalloy [J]. Acta Metallurgica Sinica, 2013, 49(10): 1243. DOI: https://doi.org/10.3724/sp.j.1037.2013.00108.

    Article  Google Scholar 

  21. CORBY C, CÁCERES C H, LUKÁČ P. Serrated flow in magnesium alloy AZ91 [J]. Materials Science and Engineering A, 2004, 387–389: 22–24. DOI: https://doi.org/10.1016/j.msea.2004.01.077.

    Article  Google Scholar 

  22. WANG Ya-fei, XIA Liu, CAO Yi-tao, et al. Imposition of electric current to promote the Portevin-Le Chatelier effect of CoCrFeMnNi high-entropy alloy at low temperatures [J]. Materials Science and Engineering A, 2020, 793: 139893. DOI: https://doi.org/10.1016/j.msea.2020.139893.

    Article  Google Scholar 

  23. SCHNEIDER R, GRANT R J, HEINE B, et al. An analysis of the surface quality of AA5182 at different testing temperatures [J]. Materials & Design, 2014, 64: 750–754. DOI: https://doi.org/10.1016/j.matdes.2014.08.028.

    Article  Google Scholar 

  24. ROBINSON J M, SHAW M P. Microstructural and mechanical influences on dynamic strain aging phenomena [J]. International Materials Reviews, 1994, 39(3): 113–122. DOI: https://doi.org/10.1179/imr.1994.39.3.113.

    Article  Google Scholar 

  25. CHUNG N, EMBURY J D, EVENSEN J D, et al. Unstable shear failure in a 7075 aluminum alloy [J]. Acta Metallurgica, 1977, 25(4): 377–381. DOI: https://doi.org/10.1016/0001-6160(77)90229-2.

    Article  Google Scholar 

  26. KANG J, WILKINSON D S, JAIN M, et al. On the sequence of inhomogeneous deformation processes occurring during tensile deformation of strip cast AA5754 [J]. Acta Materialia, 2006, 54(1): 209–218. DOI: https://doi.org/10.1016/j.actamat.2005.08.045.

    Article  Google Scholar 

  27. JIANG Hui-feng, ZHANG Qing-chuan, CHEN Xue-dong, et al. Three types of Portevin-Le Chatelier effects: Experiment and modelling [J]. Acta Materialia, 2007, 55(7): 2219–2228. DOI: https://doi.org/10.1016/j.actamat.2006.10.029.

    Article  Google Scholar 

  28. LEBEDKINA T A, LEBYODKIN M A. Effect of deformation geometry on the intermittent plastic flow associated with the Portevin-Le Chatelier effect [J]. Acta Materialia, 2008, 56(19): 5567–5574. DOI: https://doi.org/10.1016/j.actamat.2008.07.025.

    Article  Google Scholar 

  29. PICU R C, ZHANG D. Atomistic study of pipe diffusion in Al-Mg alloys [J]. Acta Materialia, 2004, 52(1): 161–171. DOI: https://doi.org/10.1016/j.actamat.2003.09.002.

    Article  Google Scholar 

  30. SARMAH R, ANANTHAKRISHNA G. Correlation between band propagation property and the nature of serrations in the Portevin-Le Chatelier effect [J]. Acta Materialia, 2015, 91: 192–201. DOI: https://doi.org/10.1016/j.actamat.2015.03.027.

    Article  Google Scholar 

  31. KUBIN L P, ESTRIN Y. The portevin-Le Chatelier effect in deformation with constant stress rate [J]. Acta Metallurgica, 1985, 33(3): 397–407. DOI: https://doi.org/10.1016/0001-6160(85)90082-3.

    Article  Google Scholar 

  32. MCCORMICK P G. Theory of flow localisation due to dynamic strain ageing [J]. Acta Metallurgica, 1988, 36(12): 3061–3067. DOI: https://doi.org/10.1016/0001-6160(88)90043-0.

    Article  Google Scholar 

  33. PENNING P. Mathematics of the portevin-le Chatelier effect [J]. Acta Metallurgica, 1972, 20(10): 1169–1175. DOI: https://doi.org/10.1016/0001-6160(72)90165-4.

    Article  Google Scholar 

  34. CHOUDHURI D, MANTRI S A, ALAM T, et al. Precipitate-dislocation interaction mediated Portevin-Le Chatelier-like effect in a beta-stabilized Ti-Mo-Nb-Al alloy [J]. Scripta Materialia, 2016, 124: 15–20. DOI: https://doi.org/10.1016/j.scriptamat.2016.06.043.

    Article  Google Scholar 

  35. YUAN L, GAO X Y, ZHANG X Q, et al. Mechanical properties and Portevin-Le Chatelier effect of a Ni-Cr-Mo alloy containing ordered phase with Pt2Mo-type structure at elevated temperature [J]. Materials Science and Engineering A, 2017, 680: 115–120. DOI: https://doi.org/10.1016/j.msea.2016.10.086.

    Article  Google Scholar 

  36. PICU R C, VINCZE G, OZTURK F, et al. Strain rate sensitivity of the commercial aluminum alloy AA5182-O [J]. Materials Science and Engineering A, 2005, 390(1, 2): 334–343. DOI: https://doi.org/10.1016/j.msea.2004.08.029.

    Article  Google Scholar 

  37. CURTIN W A, OLMSTED D L, HECTOR L G. A predictive mechanism for dynamic strain ageing in aluminium–magnesium alloys [J]. Nature Materials, 2006, 5(11): 875–880. DOI: https://doi.org/10.1038/nmat1765.

    Article  Google Scholar 

  38. JIANG Hui-feng, ZHANG Qing-chuan, WU Xiao-ping, et al. Spatiotemporal aspects of the Portevin-Le Chatelier effect in annealed and solution-treated aluminum alloys [J]. Scripta Materialia, 2006, 54(12): 2041–2045. DOI: https://doi.org/10.1016/j.scriptamat.2006.03.027.

    Article  Google Scholar 

  39. HORVÁTH G, CHINH N Q, GUBICZA J, et al. Plastic instabilities and dislocation densities during plastic deformation in Al-Mg alloys [J]. Materials Science and Engineering A, 2007, 445–446: 186–192. DOI: https://doi.org/10.1016/j.msea.2006.09.019.

    Article  Google Scholar 

  40. ZAISER M. Scale invariance in plastic flow of crystalline solids [J]. Advances in Physics, 2006, 55(1, 2): 185–245. DOI: https://doi.org/10.1080/00018730600583514.

    Article  Google Scholar 

  41. YILMAZ A. The Portevin-Le Chatelier effect: A review of experimental findings [J]. Science and Technology of Advanced Materials, 2011, 12(6): 063001. DOI: https://doi.org/10.1088/1468-6996/12/6/063001.

    Article  Google Scholar 

  42. COTTRELL A H. Dislocations and plastic flow in crystals [M]. Oxford: Clarendon, 1953.

    MATH  Google Scholar 

  43. van den BEUKEL A. Theory of the effect of dynamic strain aging on mechanical properties [J]. Physica Status Solidi (a), 1975, 30(1): 197–206. DOI: https://doi.org/10.1002/pssa.2210300120.

    Article  Google Scholar 

  44. ZHEMCHUZHNIKOVA D, LEBYODKIN M, YUZBEKOVA D, et al. Interrelation between the Portevin-Le Chatelier effect and necking in AlMg alloys [J]. International Journal of Plasticity, 2018, 110: 95–109. DOI: https://doi.org/10.1016/j.ijplas.2018.06.012.

    Article  Google Scholar 

  45. MCCORMIGK P G. A model for the Portevin-Le Chatelier effect in substitutional alloys [J]. Acta Metallurgica, 1972, 20(3): 351–354. DOI: https://doi.org/10.1016/0001-6160(72)90028-4.

    Article  Google Scholar 

  46. BHARATHI M S, ANANTHAKRISHNA G. Chaotic and power law states in the Portevin-Le Chatelier effect [J]. Europhysics Letters (EPL), 2002, 60(2): 234–240. DOI: https://doi.org/10.1209/epl/i2002-00391-2.

    Article  Google Scholar 

  47. ANANTHAKRISHNA G. Spatio-temporal features of the Portevin-Le Chatelier effect [J]. Materials Science and Engineering A, 2005, 400–401: 210–213. DOI: https://doi.org/10.1016/j.msea.2005.03.037.

    Article  MATH  Google Scholar 

  48. ESTRIN Y, LEBYODKIN M A. The influence of dispersion particles on the Portevin-Le Chatelier effect: From average particle characteristics to particle arrangement [J]. Materials Science and Engineering A, 2004, 387–389: 195–198. DOI: https://doi.org/10.1016/j.msea.2004.01.079.

    Article  Google Scholar 

  49. ANANTHAKRISHNA G, VALSAKUMAR M C. Repeated yield drop phenomenon: A temporal dissipative structure [J]. Journal of Physics D: Applied Physics, 1982, 15(12): L171–L175. DOI: https://doi.org/10.1088/0022-3727/15/12/003.

    Article  Google Scholar 

  50. ANANTHAKRISHNA G. Current theoretical approaches to collective behavior of dislocations [J]. Physics Reports, 2007, 440(4–6): 113–259. DOI: https://doi.org/10.1016/j.physrep.2006.10.003.

    Article  MathSciNet  Google Scholar 

  51. ZHANG Yong, LIU Jun-peng, CHEN Shu-ying, et al. Serration and noise behaviors in materials [J]. Progress in Materials Science, 2017, 90: 358–460. DOI: https://doi.org/10.1016/j.pmatsci.2017.06.004.

    Article  Google Scholar 

  52. ZHANG Jin-yu, GAO Yi-han, YANG Chong, et al. Microalloying Al alloys with Sc: A review [J]. Rare Metals, 2020, 39(6): 636–650. DOI: https://doi.org/10.1007/s12598-020-01433-1.

    Article  Google Scholar 

  53. YI Meng, ZHANG Peng, YANG Chong, et al. Improving creep resistance of Al-12 wt.% Ce alloy by microalloying with Sc [J]. Scripta Materialia, 2021, 198: 113838. DOI: https://doi.org/10.1016/j.scriptamat.2021.113838.

    Article  Google Scholar 

  54. KOCKS U F, MECKING H. Physics and phenomenology of strain hardening: The FCC case [J]. Progress in Materials Science, 2003, 48(3): 171–273. DOI: https://doi.org/10.1016/S0079-6425(02)00003-8.

    Article  Google Scholar 

  55. OVID’KO I A, VALIEV R Z, ZHU Y T. Review on superior strength and enhanced ductility of metallic nanomaterials [J]. Progress in Materials Science, 2018, 94: 462–540. DOI: https://doi.org/10.1016/j.pmatsci.2018.02.002.

    Article  Google Scholar 

  56. WU Hao, FAN Guo-hua. An overview of tailoring strain delocalization for strength-ductility synergy [J]. Progress in Materials Science, 2020, 113: 100675. DOI: https://doi.org/10.1016/j.pmatsci.2020.100675.

    Article  Google Scholar 

  57. ZHANG Z F, WANG Z G. Grain boundary effects on cyclic deformation and fatigue damage [J]. Progress in Materials Science, 2008, 53(7): 1025–1099. DOI: https://doi.org/10.1016/j.pmatsci.2008.06.001.

    Article  Google Scholar 

  58. REN S C, MORGENEYER T F, MAZIÈRE M, et al. Portevin-Le Chatelier effect triggered by complex loading paths in an Al–Cu aluminium alloy [J]. Philosophical Magazine, 2019, 99(6): 659–678. DOI: https://doi.org/10.1080/14786435.2018.1550296.

    Article  Google Scholar 

  59. NAYAN N, MUKHOPADHYAY A K, NARAYANA MURTY S V S, et al. Effect of Cu and Li contents on the serrated flow behavior of Al-Cu-Li based alloys [J]. Metallurgical and Materials Transactions A, 2020, 51(4): 1457–1462. DOI: https://doi.org/10.1007/s11661-020-05631-5.

    Article  Google Scholar 

  60. NIE Xiao-jia, ZHANG Hu, ZHU Hai-hong, et al. On the role of Zr content into Portevin-Le Chatelier (PLC) effect of selective laser melted high strength Al-Cu-Mg-Mn alloy [J]. Materials Letters, 2019, 248: 5–7. DOI: https://doi.org/10.1016/j.matlet.2019.03.112.

    Article  Google Scholar 

  61. ZIANI L, BOUDRAHEM S, AIT-AMOKHTAR H, et al. Unstable plastic flow in the Al-2%Mg alloy, effect of annealing process [J]. Materials Science and Engineering A, 2012, 536: 239–243. DOI: https://doi.org/10.1016/j.msea.2012.01.004.

    Article  Google Scholar 

  62. ZDUNEK J, SPYCHALSKI W L, MIZERA J, et al. The influence of specimens geometry on the PLC effect in Al-Mg-Mn (5182) alloy [J]. Materials Characterization, 2007, 58(1): 46–50. DOI: https://doi.org/10.1016/j.matchar.2006.03.009.

    Article  Google Scholar 

  63. ZDUNEK J, WIDLICKI P, GARBACZ H, et al. Influence of severe plastic deformation on the PLC effect and mechanical properties in Al5 XXX alloy [J]. Solid State Phenomena, 2006, 114: 171–176. DOI: https://doi.org/10.4028/www.scientific.net/ssp.114.171.

    Article  Google Scholar 

  64. JEONG H T, KIM W J. Strain hardening behavior and strengthening mechanism in Mg-rich Al-Mg binary alloys subjected to aging treatment [J]. Materials Science and Engineering A, 2020, 794: 139862. DOI: https://doi.org/10.1016/j.msea.2020.139862.

    Article  Google Scholar 

  65. WANG Yi-tong, ZHAO Yu-guang, PAN Dong, et al. Multiple precipitates and weakened PLC effect in the electropulsing treated Al-Mg-Si alloy [J]. Materials Letters, 2020, 261: 127089. DOI: https://doi.org/10.1016/j.matlet.2019.127089.

    Article  Google Scholar 

  66. KUMAR N, GOEL S, JAYAGANTHAN R, et al. Effect of solution treatment on mechanical and corrosion behaviors of 6082-T6 Al alloy [J]. Metallography, Microstructure, and Analysis, 2015, 4(5): 411–422. DOI: https://doi.org/10.1007/s13632-015-0219-z.

    Article  Google Scholar 

  67. ZHANG Peng, SHI Kun-kun, BIAN Jian-jun, et al. Solute cluster evolution during deformation and high strain hardening capability in naturally aged Al-Zn-Mg alloy [J]. Acta Materialia, 2021, 207: 116682. DOI: https://doi.org/10.1016/j.actamat.2021.116682.

    Article  Google Scholar 

  68. THEVENET D, MLIHA-TOUATI M, ZEGHLOUL A. Characteristics of the propagating deformation bands associated with the Portevin-Le Chatelier effect in an Al-Zn-Mg-Cu alloy [J]. Materials Science and Engineering A, 2000, 291(1, 2): 110–117. DOI: https://doi.org/10.1016/S0921-5093(00)00988-6.

    Article  MATH  Google Scholar 

  69. THEVENET D, MLIHA-TOUATI M, ZEGHLOUL A. The effect of precipitation on the Portevin-Le Chatelier effect in an Al-Zn-Mg-Cu alloy [J]. Materials Science and Engineering A, 1999, 266(1, 2): 175–182. DOI: https://doi.org/10.1016/S0921-5093(99)00029-5.

    Article  Google Scholar 

  70. ZHAO Shi-teng, MENG Chen-lu, MAO Feng-xin, et al. Influence of severe plastic deformation on dynamic strain aging of ultrafine grained Al-Mg alloys [J]. Acta Materialia, 2014, 76: 54–67. DOI: https://doi.org/10.1016/j.actamat.2014.05.004.

    Article  Google Scholar 

  71. MUÑOZ-MORRIS M A, OCA C G, MORRIS D G. Mechanical behaviour of dilute Al-Mg alloy processed by equal channel angular pressing [J]. Scripta Materialia, 2003, 48(3): 213–218. DOI: https://doi.org/10.1016/S1359-6462(02)00501-8.

    Article  Google Scholar 

  72. MENG Xiang-chen, LIU Bei, LUO Lan, et al. The Portevin-Le Châtelier effect of gradient nanostructured 5182 aluminum alloy by surface mechanical attrition treatment [J]. Journal of Materials Science & Technology, 2018, 34(12): 2307–2315. DOI: https://doi.org/10.1016/j.jmst.2018.06.002.

    Article  Google Scholar 

  73. NAM J H, OH S K, PARK M H, et al. The mechanism of dynamic strain aging for type A serrations in tensile curves of a medium-Mn steel [J]. Acta Materialia, 2021, 206: 116613. DOI: https://doi.org/10.1016/j.actamat.2020.116613.

    Article  Google Scholar 

  74. HU Zhi-heng, QI Yang, NIE Xiao-jia, et al. The Portevin-Le Chatelier (PLC) effect in an Al-Cu aluminum alloy fabricated by selective laser melting [J]. Materials Characterization, 2021, 178: 111198. DOI: https://doi.org/10.1016/j.matchar.2021.111198.

    Article  Google Scholar 

  75. AIT-AMOKHTAR H, FRESSENGEAS C. Crossover from continuous to discontinuous propagation in the Portevin-Le Chatelier effect [J]. Acta Materialia, 2010, 58(4): 1342–1349. DOI: https://doi.org/10.1016/j.actamat.2009.10.038.

    Article  Google Scholar 

  76. CAI Yu-long, YANG Su-li, FU Shi-hua, et al. Investigation of Portevin-Le Chatelier band strain and elastic shrinkage in Al-based alloys associated with Mg contents [J]. Journal of Materials Science & Technology, 2017, 33(6): 580–586. DOI: https://doi.org/10.1016/j.jmst.2016.05.012.

    Article  Google Scholar 

  77. HALIM H, WILKINSON D S, NIEWCZAS M. The Portevin-Le Chatelier (PLC) effect and shear band formation in an AA5754 alloy [J]. Acta Materialia, 2007, 55(12): 4151–4160. DOI: https://doi.org/10.1016/j.actamat.2007.03.007.

    Article  Google Scholar 

  78. WANG W H, WU D, SHAH S S A, et al. The mechanism of critical strain and serration type of the serrated flow in Mg-Nd-Zn alloy [J]. Materials Science and Engineering A, 2016, 649: 214–221. DOI: https://doi.org/10.1016/j.msea.2015.09.100.

    Article  Google Scholar 

  79. CHATTERJEE A, SARKAR A, BARAT P, et al. Character of the deformation bands in the (A+B) regime of the Portevin-Le Chatelier effect in Al-2.5%Mg alloy [J]. Materials Science and Engineering A, 2009, 508(1, 2): 156–160. DOI: https://doi.org/10.1016/j.msea.2008.12.030.

    Article  Google Scholar 

  80. BHARATHI M S, LEBYODKIN M, ANANTHAKRISHNA G, et al. Multifractal burst in the spatiotemporal dynamics of jerky flow [J]. Physical Review Letters, 2001, 87(16): 165508. DOI: https://doi.org/10.1103/PhysRevLett.87.165508.

    Article  Google Scholar 

  81. LEBYODKIN M A, BRECHET Y, ESTRIN Y, et al. Statistics of the catastrophic slip events in the Portevin-Le Châtelier effect [J]. Physical Review Letters, 1995, 74(23): 4758–4761. DOI: https://doi.org/10.1103/physrevlett.74.4758.

    Article  Google Scholar 

  82. YUZBEKOVA D, MOGUCHEVA A. The features of unstable plastic flow in an Al–Mg alloy [C]//AIP Conference Proceedings. Tomsk, Russia, 2018: 020332. DOI: https://doi.org/10.1063/1.5083575.

  83. ANANTHAKRISHNA G, NORONHA S J, FRESSENGEAS C, et al. Crossover from chaotic to self-organized critical dynamics in jerky flow of single crystals [J]. Physical Review E, Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1999, 60(5): 5455–5462. DOI: https://doi.org/10.1103/physreve.60.5455.

    Article  Google Scholar 

  84. MEHENNI M, AIT-AMOKHTAR H, FRESSENGEAS C. Spatiotemporal correlations in the Portevin-Le Chatelier band dynamics during the type B-type C transition [J]. Materials Science and Engineering A, 2019, 756: 313–318. DOI: https://doi.org/10.1016/j.msea.2019.04.036.

    Article  Google Scholar 

  85. JIANG Zhen-yu, ZHANG Qing-chuan, JIANG Hui-feng, et al. Spatial characteristics of the Portevin-Le Chatelier deformation bands in Al-4 at%Cu polycrystals [J]. Materials Science and Engineering A, 2005, 403(1–2): 154–164. DOI: https://doi.org/10.1016/j.msea.2005.05.059.

    Article  Google Scholar 

  86. XU Jian-fei, CHEN Guo-xiong, FU Shi-hua. Complexity analysis of the Portevin-Le Chatelier in an Al alloy at different temperatures [J]. Theoretical and Applied Mechanics Letters, 2021, 11(2): 100233. DOI: https://doi.org/10.1016/j.taml.2021.100233.

    Article  Google Scholar 

  87. MOGUCHEVA A, YUZBEKOVA D, KAIBYSHEV R, et al. Effect of grain refinement on jerky flow in an Al-Mg-Sc alloy [J]. Metallurgical and Materials Transactions A, 2016, 47(5): 2093–2106. DOI: https://doi.org/10.1007/s11661-016-3381-2.

    Article  Google Scholar 

  88. BAKARE F, SCHIEREN L, ROUXEL B, et al. The impact of L12 dispersoids and strain rate on the Portevin-Le-Chatelier effect and mechanical properties of Al-Mg alloys [J]. Materials Science and Engineering A, 2021, 811: 141040. DOI: https://doi.org/10.1016/j.msea.2021.141040.

    Article  Google Scholar 

  89. CHIHAB K, ESTRIN Y, KUBIN L P, et al. The kinetics of the Portevin-Le Chatelier bands in an Al-5 at%Mg alloy [J]. Scripta Metallurgica, 1987, 21(2): 203–208. DOI: https://doi.org/10.1016/0036-9748(87)90435-2.

    Article  Google Scholar 

  90. LEBYODKIN M, DUNIN-BARKOWSKII L, BRÉCHET Y, et al. Spatio-temporal dynamics of the Portevin-Le Chatelier effect: Experiment and modelling [J]. Acta Materialia, 2000, 48(10): 2529–2541. DOI: https://doi.org/10.1016/S1359-6454(00)00067-7.

    Article  Google Scholar 

  91. LEBYODKIN M, BRECHET Y, ESTRIN Y, et al. Statistical behaviour and strain localization patterns in the Portevin-Le Chatelier effect [J]. Acta Materialia, 1996, 44(11): 4531–4541. DOI: https://doi.org/10.1016/1359-6454(96)00076-6.

    Article  Google Scholar 

  92. KOK S, BHARATHI M S, BEAUDOIN A J, et al. Spatial coupling in jerky flow using polycrystal plasticity [J]. Acta Materialia, 2003, 51(13): 3651–3662. DOI: https://doi.org/10.1016/S1359-6454(03)00114-9.

    Article  Google Scholar 

  93. ANANTHAKRISHNA G, BHARATHI M S. Dynamical approach to the spatiotemporal aspects of the Portevin–Le Chatelier effect: Chaos, turbulence, and band propagation [J]. Physical Review E, 2004, 70(2): 026111. DOI: https://doi.org/10.1103/physreve.70.026111.

    Article  Google Scholar 

  94. ANANTHAKRISHNA G, SAHOO D. A model based on nonlinear oscillations to explain jumps on creep curves [J]. Journal of Physics D: Applied Physics, 1981, 14(11): 2081–2090. DOI: https://doi.org/10.1088/0022-3727/14/11/015.

    Article  Google Scholar 

  95. CUDDY L J, LESLIE W C. Some aspects of serrated yielding in substitutional solid solutions of iron [J]. Acta Metallurgica, 1972, 20(10): 1157–1167. DOI: https://doi.org/10.1016/0001-6160(72)90164-2.

    Article  Google Scholar 

  96. KUBIN L P, FRESSENGEAS C, ANANTHAKRISHNA G. Collective behaviour of dislocations in plasticity [J]. Dislocations in Solids, 2002, 11: 101–192. DOI: https://doi.org/10.1016/S1572-4859(02)80008-0.

    Article  Google Scholar 

  97. REN S C, MORGENEYER T F, MAZIÈRE M, et al. Effect of Lüders and Portevin-Le Chatelier localization bands on plasticity and fracture of notched steel specimens studied by DIC and FE simulations [J]. International Journal of Plasticity, 2021, 136: 102880. DOI: https://doi.org/10.1016/j.ijplas.2020.102880.

    Article  Google Scholar 

  98. LEE S Y, TAKUSHIMA C, HAMADA J I, et al. Macroscopic and microscopic characterizations of Portevin-Le Chatelier effect in austenitic stainless steel using high-temperature digital image correlation analysis [J]. Acta Materialia, 2021, 205: 116560. DOI: https://doi.org/10.1016/j.actamat.2020.116560.

    Article  Google Scholar 

  99. ZHANG Qing-chuan, JIANG Zhen-yu, JIANG Hui-feng, et al. On the propagation and pulsation of Portevin-Le Chatelier deformation bands: An experimental study with digital speckle pattern metrology [J]. International Journal of Plasticity, 2005, 21(11): 2150–2173. DOI: https://doi.org/10.1016/j.ijplas.2005.03.017.

    Article  Google Scholar 

  100. ZIEGENBEIN A, HÄHNER P, NEUHÄUSER H. Correlation of temporal instabilities and spatial localization during Portevin-LeChatelier deformation of Cu-10 at.% Al and Cu-15 at.% Al [J]. Computational Materials Science, 2000, 19(1–4): 27–34. DOI: https://doi.org/10.1016/S0927-0256(00)00136-1.

    Article  Google Scholar 

  101. RANC N, DU W, RANC I, et al. Experimental studies of Portevin-Le Chatelier plastic instabilities in carbon-manganese steels by infrared pyrometry [J]. Materials Science and Engineering A, 2016, 663: 166–173. DOI: https://doi.org/10.1016/j.msea.2016.03.096.

    Article  Google Scholar 

  102. HU Qi, ZHANG Qing-chuan, CAO Peng-tao, et al. Thermal analyses and simulations of the type A and type B Portevin-Le Chatelier effects in an Al-Mg alloy [J]. Acta Materialia, 2012, 60(4): 1647–1657. DOI: https://doi.org/10.1016/j.actamat.2011.12.003.

    Article  Google Scholar 

  103. AIT-AMOKHTAR H, VACHER P, BOUDRAHEM S. Kinematics fields and spatial activity of Portevin-Le Chatelier bands using the digital image correlation method [J]. Acta Materialia, 2006, 54(16): 4365–4371. DOI: https://doi.org/10.1016/j.actamat.2006.05.028.

    Article  Google Scholar 

  104. SHABADI R, KUMAR S, ROVEN H J, et al. Characterisation of PLC band parameters using laser speckle technique [J]. Materials Science and Engineering A, 2004, 364(1, 2): 140–150. DOI: https://doi.org/10.1016/j.msea.2003.08.013.

    Article  Google Scholar 

  105. SHABADI R, KUMAR S, ROVEN H J, et al. Effect of specimen condition, orientation and alloy composition on PLC band parameters [J]. Materials Science and Engineering A, 2004, 382(1, 2): 203–208. DOI: https://doi.org/10.1016/j.msea.2004.04.079.

    Article  Google Scholar 

  106. HOPPERSTAD O S, BØRVIK T, BERSTAD T, et al. A numerical study on the influence of the Portevin–Le Chatelier effect on necking in an aluminium alloy [J]. Modelling and Simulation in Materials Science and Engineering, 2007, 15(7): 747–772. DOI: https://doi.org/10.1088/0965-0393/15/7/004.

    Article  Google Scholar 

  107. BENALLAL A, BERSTAD T, BØRVIK T, et al. An experimental and numerical investigation of the behaviour of AA5083 aluminium alloy in presence of the Portevin-Le Chatelier effect [J]. International Journal of Plasticity, 2008, 24(10): 1916–1945. DOI: https://doi.org/10.1016/j.ijplas.2008.03.008.

    Article  MATH  Google Scholar 

  108. HÄHNER P, ZIEGENBEIN A, RIZZI E, et al. Spatiotemporal analysis of Portevin–Le Châtelier deformation bands: Theory, simulation, and experiment [J]. Physical Review B, 2002, 65(13): 134109. DOI: https://doi.org/10.1103/physrevb.65.134109.

    Article  Google Scholar 

  109. CAI Y, ZHANG Q, YANG S, et al. Experimental study on three-dimensional deformation field of Portevin–Le Chatelier effect using digital image correlation [J]. Experimental Mechanics, 2016, 56(7): 1243–1255. DOI: https://doi.org/10.1007/s11340-016-0138-1.

    Article  Google Scholar 

  110. YUZBEKOVA D, MOGUCHEVA A, BORISOVA Y, et al. On the mechanisms of nucleation and subsequent development of the PLC bands in an AlMg alloy [J]. Journal of Alloys and Compounds, 2021, 868: 159135. DOI: https://doi.org/10.1016/j.jallcom.2021.159135.

    Article  Google Scholar 

  111. RIZZI E, HÄHNER P. On the Portevin-Le Chatelier effect: Theoretical modeling and numerical results [J]. International Journal of Plasticity, 2004, 20(1): 121–165. DOI: https://doi.org/10.1016/S0749-6419(03)00035-4.

    Article  MATH  Google Scholar 

  112. DESCHAMPS A, FRIBOURG G, BRÉCHET Y, et al. In situ evaluation of dynamic precipitation during plastic straining of an Al-Zn-Mg-Cu alloy [J]. Acta Materialia, 2012, 60(5): 1905–1916. DOI: https://doi.org/10.1016/j.actamat.2012.01.002.

    Article  Google Scholar 

  113. COTTRELL A H. A note on the Portevin-Le Chatelier effect [J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1953, 44(355): 829–832. DOI: https://doi.org/10.1080/14786440808520347.

    Article  Google Scholar 

  114. BRINDLEY B J, WORTHINGTON P J. Yield-point phenomena in substitutional alloys [J]. Metallurgical Reviews, 1970, 15(1): 101–114. DOI: https://doi.org/10.1179/mtlr.1970.15.1.101.

    Article  Google Scholar 

  115. GILLIS P P, GILMAN J J, TAYLOR J W. Stress dependences of dislocation velocities [J]. Philosophical Magazine, 1969, 20(164): 279–289. DOI: https://doi.org/10.1080/14786436908228700.

    Article  Google Scholar 

  116. HÄUSSLER D, BARTSCH M, MESSERSCHMIDT U, et al. HVTEM in situ observations of dislocation motion in the oxide dispersion strengthened superalloy MA 754 [J]. Acta Materialia, 2001, 49(18): 3647–3657. DOI: https://doi.org/10.1016/S1359-6454(01)00285-3.

    Article  Google Scholar 

  117. KUBIN L P, ESTRIN Y. Evolution of dislocation densities and the critical conditions for the Portevin-Le Châtelier effect [J]. Acta Metallurgica et Materialia, 1990, 38(5): 697–708. DOI: https://doi.org/10.1016/0956-7151(90)90021-8.

    Article  Google Scholar 

  118. SCHWINK C, NORTMANN A. The present experimental knowledge of dynamic strain ageing in binary f. c. c. solid solutions [J]. Materials Science and Engineering A, 1997, 234–236: 1–7. DOI: https://doi.org/10.1016/S0921-5093(97)00139-1.

    Article  Google Scholar 

  119. MOLA J, LUAN Guo-qing, HUANG Qiu-liang, et al. Dynamic strain aging mechanisms in a metastable austenitic stainless steel [J]. Acta Materialia, 2021, 212: 116888. DOI: https://doi.org/10.1016/j.actamat.2021.116888.

    Article  Google Scholar 

  120. MULFORD R A, KOCKS U F. New observations on the mechanisms of dynamic strain aging and of jerky flow [J]. Acta Metallurgica, 1979, 27(7): 1125–1134. DOI: https://doi.org/10.1016/0001-6160(79)90130-5.

    Article  Google Scholar 

  121. AGHAIE-KHAFRI M, MAHMUDI R. Flow localization and plastic instability during the tensile deformation of al alloy sheet [J]. JOM, 1998, 50(11): 50–52. DOI: https://doi.org/10.1007/s11837-998-0287-5.

    Article  Google Scholar 

  122. van den BRINK S H, van den BEUKEL A, MCCORMICK P G. Strain rate sensitivity and the Portevin-Le Chatelier effect in Au-Cu alloys [J]. Physica Status Solidi (a), 1975, 30(2): 469–477. DOI: https://doi.org/10.1002/pssa.2210300205.

    Article  Google Scholar 

  123. SOLER-GOMEZ A J R, McG TEGART W J. Serrated flow in gold-indium alloys [J]. Philosophical Magazine, 1969, 20(165): 495–509. DOI: https://doi.org/10.1080/14786436908228722.

    Article  Google Scholar 

  124. WIJLER A, VRIJHOEF M M A, van den BEUKEL A. The onset of serrated yielding in Au(Cu) alloys [J]. Scripta Metallurgica, 1973, 7(8): iii–iv. DOI: https://doi.org/10.1016/0036-9748(73)90291-3.

    Article  Google Scholar 

  125. SUN Wen-wen, ZHU Yu-man, MARCEAU R, et al. Precipitation strengthening of aluminum alloys by room-temperature cyclic plasticity [J]. Science, 2019, 363(6430): 972–975. DOI: https://doi.org/10.1126/science.aav7086.

    Article  Google Scholar 

  126. YANG Zi, BANHART J. Natural and artificial ageing in aluminium alloys–the role of excess vacancies [J]. Acta Materialia, 2021, 215: 117014. DOI: https://doi.org/10.1016/j.actamat.2021.117014.

    Article  Google Scholar 

  127. DUAN Yao-xiang, CHEN Han, CHEN Zhe, et al. The influence of nanosized precipitates on Portevin-Le Chatelier bands and surface roughness in AlMgScZr alloy [J]. Journal of Materials Science & Technology, 2021, 87: 74–82. DOI: https://doi.org/10.1016/j.jmst.2021.01.044.

    Article  Google Scholar 

  128. CHEN Han, CHEN Zhe, LIU Jun, et al. Constitutive modeling of flow stress and work hardening behavior while considering dynamic strain aging [J]. Materialia, 2021, 18: 101137. DOI: https://doi.org/10.1016/j.mtla.2021.101137.

    Article  Google Scholar 

  129. ZHONG Hao, ROMETSCH P A, ZHU Qian-qian, et al. Effect of pre-ageing on dynamic strain ageing in Al-Mg-Si alloys [J]. Materials Science and Engineering A, 2017, 687: 323–331. DOI: https://doi.org/10.1016/j.msea.2017.01.051.

    Article  Google Scholar 

  130. SPRINGER F, NORTMANN A, SCHWINK C. A study of basic processes characterizing dynamic strain ageing [J]. Physica Status Solidi (a), 1998, 170(1): 63–81. DOI: https://doi.org/10.1002/(SICI)1521-396X(199811)170:1<63:AID-PSSA63>3.0.CO;2-F.

    Article  Google Scholar 

  131. LEGROS M, DEHM G, ARZT E, et al. Observation of giant diffusivity along dislocation cores [J]. Science, 2008, 319(5870): 1646–1649. DOI: https://doi.org/10.1126/science.1151771.

    Article  Google Scholar 

  132. LING C P, MCCORMICK P G. The effect of temperature on strain rate sensitivity in an Al-Mg-Si alloy [J]. Acta Metallurgica et Materialia, 1993, 41(11): 3127–3131. DOI: https://doi.org/10.1016/0956-7151(93)90042-Q.

    Article  Google Scholar 

  133. BEUKEL A V D, KOCKS U F. The strain dependence of static and dynamic strain-aging [J]. Acta Metallurgica, 1982, 30(5): 1027–1034. DOI: https://doi.org/10.1016/0001-6160(82)90211-5.

    Article  Google Scholar 

  134. SLEESWYK A W. Slow strain-hardening of ingot iron [J]. Acta Metallurgica, 1958, 6(9): 598–603. DOI: https://doi.org/10.1016/0001-6160(58)90101-9.

    Article  Google Scholar 

  135. BRÉCHET Y, ESTRIN Y. On the influence of precipitation on the Portevin-Le Chatelier effect [J]. Acta Metallurgica et Materialia, 1995, 43(3): 955–963. DOI: https://doi.org/10.1016/0956-7151(94)00334-E.

    Article  Google Scholar 

  136. KUBIN L P, ESTRIN Y, PERRIER C. On static strain ageing [J]. Acta Metallurgica et Materialia, 1992, 40(5): 1037–1044. DOI: https://doi.org/10.1016/0956-7151(92)90081-O.

    Article  Google Scholar 

  137. ABOULFADL H, DEGES J, CHOI P, et al. Dynamic strain aging studied at the atomic scale [J]. Acta Materialia, 2015, 86: 34–42. DOI: https://doi.org/10.1016/j.actamat.2014.12.028.

    Article  Google Scholar 

  138. ZHANG F, CURTIN W A. Atomistically informed solute drag in Al–Mg [J]. Modelling and Simulation in Materials Science and Engineering, 2008, 16(5): 055006. DOI: https://doi.org/10.1088/0965-0393/16/5/055006.

    Article  Google Scholar 

  139. XIONG Shao-min, ZHANG Qing-chuan, CAO Peng-tao, et al. Effect of precipitate on PLC effect in 2024 al alloy [J]. Acta Metallurgica Sinica, 2009, 45(7): 892–896. DOI: https://doi.org/10.3321/j.issn:0412-1961.2009.07.020. (in Chinese)

    Google Scholar 

  140. SUN Liang, ZHANG Qing-chuan, CAO Peng-tao. Influence of solute cloud and precipitates on spatiotemporal characteristics of Portevin-Le Chatelier effect in A2024 aluminum alloys [J]. Chinese Physics B, 2009, 18(8): 3500–3507. DOI: https://doi.org/10.1088/1674-1056/18/8/061.

    Article  Google Scholar 

  141. CHENG S, ZHAO Y H, ZHU Y T, et al. Optimizing the strength and ductility of fine structured 2024 Al alloy by nano-precipitation [J]. Acta Materialia, 2007, 55(17): 5822–5832. DOI: https://doi.org/10.1016/j.actamat.2007.06.043.

    Article  Google Scholar 

  142. YILDIZ R A, YILMAZ S. Stress–strain properties of artificially aged 6061 Al alloy: Experiments and modeling [J]. Journal of Materials Engineering and Performance, 2020, 29(9): 5764–5775. DOI: https://doi.org/10.1007/s11665-020-05080-6.

    Article  Google Scholar 

  143. BAGHDADI A H, RAJABI A, SELAMAT N F M, et al. Effect of post-weld heat treatment on the mechanical behavior and dislocation density of friction stir welded Al 6061 [J]. Materials Science and Engineering A, 2019, 754: 728–734. DOI: https://doi.org/10.1016/j.msea.2019.03.017.

    Article  Google Scholar 

  144. FILATOV Y A, YELAGIN V I, ZAKHAROV V V. New Al-Mg-Sc alloys [J]. Materials Science and Engineering A, 2000, 280(1): 97–101. DOI: https://doi.org/10.1016/S0921-5093(99)00673-5.

    Article  Google Scholar 

  145. WEN Wei, MORRIS J G. An investigation of serrated yielding in 5000 series aluminum alloys [J]. Materials Science and Engineering A, 2003, 354(1, 2): 279–285. DOI: https://doi.org/10.1016/S0921-5093(03)00017-0.

    Article  Google Scholar 

  146. LEBYODKIN M A, ESTRIN Y. Multifractal analysis of the Portevin-Le Chatelier effect: General approach and application to AlMg and AlMg/Al2O3 alloys [J]. Acta Materialia, 2005, 53(12): 3403–3413. DOI: https://doi.org/10.1016/j.actamat.2005.03.042.

    Article  Google Scholar 

  147. BRAILSFORD A D, MANSUR L K. The effect of precipitate-matrix interface sinks on the growth of voids in the matrix [J]. Journal of Nuclear Materials, 1981, 104: 1403–1408. DOI: https://doi.org/10.1016/0022-3115(82)90796-6.

    Article  Google Scholar 

  148. ZHENG G W, LI H, LEI C, et al. Natural aging behaviors and mechanisms of 7050 and 5A90 Al alloys: A comparative study [J]. Materials Science and Engineering A, 2018, 718: 157–164. DOI: https://doi.org/10.1016/j.msea.2018.01.119.

    Article  Google Scholar 

  149. PINK E. The effect of precipitates on characteristics of serrated flow in AlZn5Mg1 [J]. Acta Metallurgica, 1989, 37(7): 1773–1781. DOI: https://doi.org/10.1016/0001-6160(89)90062-X.

    Article  Google Scholar 

  150. CHEN Jun-zhou, ZHEN Liang, FAN Li-wei, et al. Portevin-Le Chatelier effect in Al-Zn-Mg-Cu-Zr aluminum alloy [J]. Transactions of Nonferrous Metals Society of China, 2009, 19(5): 1071–1075. DOI: https://doi.org/10.1016/S1003-6326(08)60408-2.

    Article  Google Scholar 

  151. PINK E, WEBERNIG W M, KRÓL J. Guinier-Preston zones and the onset strain of serrated flow [J]. Materials Science and Engineering, 1987, 93: L1–L4. DOI: https://doi.org/10.1016/0025-5416(87)90431-9.

    Article  Google Scholar 

  152. KUMAR S, SHABADI R, PATEL M M. Influence of precipitation on serrated flow in Al-5Zn-1Mg alloy [J]. Materials Science and Technology, 2003, 19(10): 1344–1348. DOI: https://doi.org/10.1179/026708303225006051.

    Article  Google Scholar 

  153. DUPASQUIER A, FERRAGUT R, IGLESIAS M M, et al. Hardening nanostructures in an AlZnMg alloy [J]. Philosophical Magazine, 2007, 87(22): 3297–3323. DOI: https://doi.org/10.1080/14786430701271959.

    Article  Google Scholar 

  154. SOMOZA A, PETKOV M P, LYNN K G, et al. Stability of vacancies during solute clustering in Al-Cu-based alloys [J]. Physical Review B, 2002, 65(9): 094107. DOI: https://doi.org/10.1103/physrevb.65.094107.

    Article  Google Scholar 

  155. DESCHAMPS A, SINQ L L, BRÉCHET Y, et al. Anomalous strain hardening behaviour of a supersaturated Al-Zn-Mg alloy [J]. Materials Science and Engineering A, 1997, 234–236: 477–480. DOI: https://doi.org/10.1016/S0921-5093(97)00324-9.

    Article  Google Scholar 

  156. DESCHAMPS A, BLEY F, LIVET F, et al. In-situ small-angle X-ray scattering study of dynamic precipitation in an Al-Zn-Mg-Cu alloy [J]. Philosophical Magazine, 2003, 83(6): 677–692. DOI: https://doi.org/10.1080/0141861021000051091.

    Article  Google Scholar 

  157. BRECHET Y, ESTRIN Y. Pseudo-Portevin-Le Châtelier effect in ordered alloys [J]. Scripta Materialia, 1996, 35(2): 217–223. DOI: https://doi.org/10.1016/1359-6462(96)00126-1.

    Article  Google Scholar 

  158. BRECHET Y, ESTRIN Y. On a pseudo-Portevin-Le Chatelier effect [J]. Scripta Metallurgica et Materialia, 1994, 31(2): 185–190. DOI: https://doi.org/10.1016/0956-716X(94)90172-4.

    Article  Google Scholar 

  159. BEHNOOD N, EVANS J T. Plastic deformation and the flow stress of aluminium-lithium alloys [J]. Acta Metallurgica, 1989, 37(2): 687–695. DOI: https://doi.org/10.1016/0001-6160(89)90252-6.

    Article  Google Scholar 

  160. OVRI H, LILLEODDEN E T. New insights into plastic instability in precipitation strengthened Al-Li alloys [J]. Acta Materialia, 2015, 89: 88–97. DOI: https://doi.org/10.1016/j.actamat.2015.01.065.

    Article  Google Scholar 

  161. PINK E, KUMAR S, TIAN Bao-hui. Serrated flow of aluminium alloys influenced by precipitates [J]. Materials Science and Engineering A, 2000, 280(1): 17–24. DOI: https://doi.org/10.1016/S0921-5093(99)00650-4.

    Article  Google Scholar 

  162. KUMAR S, PINK E. Serrated flow in aluminium alloys containing lithium [J]. Acta Materialia, 1997, 45(12): 5295–5301. DOI: https://doi.org/10.1016/S1359-6454(97)00149-3.

    Article  Google Scholar 

  163. ZHU Ai-wu. Evolution of size distribution of shearable ordered precipitates under homogeneous deformation: Application to an Al-Li-alloy [J]. Acta Materialia, 1997, 45(10): 4213–4223. DOI: https://doi.org/10.1016/S1359-6454(97)00077-3.

    Article  Google Scholar 

  164. ZHU A W. Strain localization and formation of heterogeneous distribution of shearable ordered precipitates: Application to an Al-10 at.% Li single crystal [J]. Acta Materialia, 1998, 46(9): 3211–3220. DOI: https://doi.org/10.1016/S1359-6454(97)00488-6.

    Article  Google Scholar 

  165. FURUKAWA M, MIURA Y, NEMOTO M. Arrangement of deformation induced dislocations in aged Al–Li alloys [J]. Transactions of the Japan Institute of Metals, 1985, 26(4): 225–229. DOI: https://doi.org/10.2320/matertrans1960.26.225.

    Article  Google Scholar 

  166. LEBEDKINA T A, LEBYODKIN M A, LAMARK T T, et al. Effect of equal channel angular pressing on the Portevin-Le Chatelier effect in an Al3Mg alloy [J]. Materials Science and Engineering A, 2014, 615: 7–13. DOI: https://doi.org/10.1016/j.msea.2014.07.064.

    Article  Google Scholar 

  167. TOPPING T D, AHN B, LI Ying, et al. Influence of process parameters on the mechanical behavior of an ultrafine-grained Al alloy [J]. Metallurgical and Materials Transactions A, 2012, 43(2): 505–519. DOI: https://doi.org/10.1007/s11661-011-0849-y.

    Article  Google Scholar 

  168. MARKUSHEV M V, MURASHKIN M Y. Structure and mechanical properties of commercial Al-Mg 1560 alloy after equal-channel angular extrusion and annealing [J]. Materials Science and Engineering A, 2004, 367(1, 2): 234–242. DOI: https://doi.org/10.1016/j.msea.2003.10.237.

    Article  Google Scholar 

  169. PINK E, ARSENAULT R J. Stress-drop rates in serrated flow and their strain and temperature dependences: A comparison of an aluminum-magnesium alloy and a mild steel [J]. Materials Science and Engineering A, 1999, 272(1): 57–62. DOI: https://doi.org/10.1016/S0921-5093(99)00458-X.

    Article  Google Scholar 

  170. JIANG L, LI J K, CHENG P M, et al. Microalloying ultrafine grained Al alloys with enhanced ductility [J]. Scientific Reports, 2014, 4: 3605. DOI: https://doi.org/10.1038/srep03605.

    Article  Google Scholar 

  171. WANG Y M, MA E. Strain hardening, strain rate sensitivity, and ductility of nanostructured metals [J]. Materials Science and Engineering A, 2004, 375–377: 46–52. DOI: https://doi.org/10.1016/j.msea.2003.10.214.

    Article  Google Scholar 

  172. MALOPHEYEV S, KAIBYSHEV R. Strengthening mechanisms in a Zr-modified 5083 alloy deformed to high strains [J]. Materials Science and Engineering A, 2015, 620: 246–252. DOI: https://doi.org/10.1016/j.msea.2014.10.030.

    Article  Google Scholar 

  173. CHARNOCK W. The influence of grain size on the nature of Portevin-Le Chatelier yielding [J]. The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics, 1968, 18(151): 89–99. DOI: https://doi.org/10.1080/14786436808227311.

    Article  Google Scholar 

  174. BORISOVA Y, YUZBEKOVA D, MOGUCHEVA A. The influence of SPD on the Portevin-Le Chatelier effect in an AlMgMnZr alloy [J]. AIP Conference Proceedings, 2019, 2167: 020037. DOI: https://doi.org/10.1063/1.5131904.

    Article  Google Scholar 

  175. KOMARASAMY M, MISHRA R S. Serration behavior and shear band characteristics during tensile deformation of an ultrafine-grained 5024 Al alloy [J]. Materials Science and Engineering A, 2014, 616: 189–195. DOI: https://doi.org/10.1016/j.msea.2014.08.027.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

ZHANG Peng conducted the literature review and wrote the first draft of the manuscript. ZHANG Peng, LIU Gang and SUN Jun edited the draft of manuscript.

Corresponding author

Correspondence to Gang Liu  (刘刚).

Ethics declarations

ZHANG Peng, LIU Gang and SUN Jun declare that they have no conflict of interest.

Additional information

Foundation item: Projects(52001249, 51761135031, 51790482, 51722104) supported by the National Natural Science Foundation of China; Project(2017YFB0702301) supported by the National Key Research and Development Program of China; Project (2019M653595) supported by the China Postdoctoral Science Foundation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, P., Liu, G. & Sun, J. A critical review on the Portevin-Le Chatelier effect in aluminum alloys. J. Cent. South Univ. 29, 744–766 (2022). https://doi.org/10.1007/s11771-022-4977-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-022-4977-x

Key words

关键词

Navigation