Skip to main content
Log in

Bifunctional polymer electrolyte with higher lithium-ion transference number for lithium-sulfur batteries

新型P(VDF-HFP)基双功能高离子迁移数聚合物电解质用于锂硫电池

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Lithium-sulfur (Li-S) batteries have attracted enormous interest due to their super-high theoretical energy density (2600 W · h/kg) in recent years. However, issues such as lithium dendrites and the shuttle effect severely hampered the large-scale application of Li-S batteries. Herein, a novel bifunctional gel polymer electrolyte, poly(N,N-diallyl-N, N-dimethylammonium bis(trifluoromethylsulfonylimide))-P(VDF-HFP) (PDDA-TFSI-P(VDF-HFP), PTP), was prepared by anion exchange reaction to tackle the above problems. Benefited from the interaction between TFSI and quaternary ammonium ion in PTP, a higher lithium-ion transference number was obtained, which could availably protect Li metal anodes. Meanwhile, due to the adsorption interactions between PDDA-TFSI and polysulfides (LiPSs), the shuttle effect of Li-S batteries could be alleviated effectively. Consequently, the Li symmetric batteries assembled with PTP cycled more than 1000 h and lithium metal anodes were protected effectively. Li-S batteries assembled with this polymer electrolyte show a discharge specific capacity of 813 mA·h/g after 200 cycles and 467 mA·h/g at 3C, exhibiting excellent cycling stability and C-rates performance.

摘要

锂硫电池由于具有较高的理论能量密度, 价格低廉, 环境友好等特点而备受关注, 然而锂硫电 池仍然面临着锂金属负极枝晶生长造成界面不稳定, 多硫化物溶解造成穿梭效应等一系列问题。为了 解决以上问题, 使用聚二烯丙基二甲基氯化铵(PDDA-Cl)水溶液与双三氟甲磺酰亚胺锂(LiTFSI)进行阴 离子交换反应, 制备了带有大阴离子TFS 的聚合物PDDA-TFSI, 并与P(VDF-HFP)进行复合制备了聚 合物电解质PDDA-TFSI-P(VDF-HFP)。这种聚合物电解质可以通过对阴离子的吸附和阻碍作用提高锂 离子迁移数, 促进锂离子在锂负极表面的均匀沉积; 同时PDDA-TFSI中的季铵离子对多硫化物也有一 定的吸附作用, 可以有效地抑制穿梭效应。实验结果表明, 使用这种双功能聚合物电解质组装的Li-Li 对称电池在电流密度为0.5 mA/cm2, 锂剥离/沉积量为2 mA∙h/cm2 时可以稳定循环近1000 h, 明显优于 液态电解质; 此外, 使用此聚合物电解质的Li-S 电池初始放电比容量可达1241 mA∙h/g, 0.2C循环200 周之后比容量为813 mA∙h/g, 且在放电倍率为3C时仍可保持467 mA·h/g 的比容量, 相对于液态电解 质表现出更好的循环稳定性和倍率性能。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. LIANG Ye-ru, ZHAO Chen-zi, YUAN Hong, CHEN Yuan, ZHANG Wei-cai, HUANG Jia-qi, YU Ding-shan, LIU Ying-liang, TITIRICI M M, CHUEH Y L. A review of rechargeable batteries for portable electronic devices [J]. InfoMat, 2019, 1(1): 6–32. DOI: https://doi.org/10.1002/inf2.12000.

    Article  Google Scholar 

  2. XU Xue-liu, LI Guang-zhong, FU Ze-wei, HU Jun-tao, LUO Zhi-ping, HUA Kang, LU Xue-qin, FANG Dong, BAO Rui, YI Jian-hong. Hydrogen reduced sodium vanadate nanowire arrays as electrode material of lithium-ion battery [J]. Journal of Central South University, 2019, 26(6): 1540–1549. DOI: https://doi.org/10.1007/s11771-019-4110-y.

    Article  Google Scholar 

  3. ZHOU Yu, LIU Ke, ZHOU Yue, NI Jia-hua, DOU Ai-chun, SU Ming-ru, LIU Yun-jian. Synthesis of a novel hexagonal porous TT-Nb2O5 via solid state reaction for highperformance lithium ion battery anodes [J]. Journal of Central South University, 2020, 27(12): 3625–3636. DOI: https://doi.org/10.1007/s11771-020-4570-0.

    Article  Google Scholar 

  4. YANG Xiao-fei, LUO Jing, SUN Xue-liang. Towards highperformance solid-state Li-S batteries: From fundamental understanding to engineering design [J]. Chemical Society Reviews, 2020, 49(7): 2140–2195. DOI: https://doi.org/10.1039/c9cs00635d.

    Article  Google Scholar 

  5. LIU Yan-yan, YAN Li-jing, ZENG Xian-qing, LI Ze-heng, ZHOU Shu-dong, DU Qiao-kun, MENG Xiang-juan, ZENG Xiao-min, LING Min, SUN Ming-hao, QIAN Chao, LIANG Cheng-du. Bio-derived N-doped porous carbon as sulfur hosts for high performance lithium sulfur batteries [J]. Journal of Central South University, 2019, 26(6): 1426–1434. DOI: https://doi.org/10.1007/s11771-019-4098-3.

    Article  Google Scholar 

  6. LIU He, CHENG Xin-bing, XU Rui, ZHANG Xue-qiang, YAN Chong, HUANG Jia-qi, ZHANG Qiang. Plating/stripping behavior of actual lithium metal anode [J]. Advanced Energy Materials, 2019, 9(44): 1902254. DOI: https://doi.org/10.1002/aenm.201902254.

    Article  Google Scholar 

  7. CHENG X B, ZHANG R, ZHAO C Z, ZHANG Q. Toward safe lithium metal anode in rechargeable batteries: A review [J]. Chemical Reviews, 2017, 117(15): 10403–10473. DOI: https://doi.org/10.1021/acs.chemrev.7b00115.

    Article  Google Scholar 

  8. JANA A, WOO S I, VIKRANT K S N, GARCÍA R E. Electrochemomechanics of lithium dendrite growth [J]. Energy & Environmental Science, 2019, 12(12): 3595–3607. DOI: https://doi.org/10.1039/c9ee01864f.

    Article  Google Scholar 

  9. JUDEZ X, ZHANG Heng, LI Chun-mei, ESHETU G G, GONZÁLEZ-MARCOS J A, ARMAND M, RODRIGUEZ-MARTINEZ L M. Review—solid electrolytes for safe and high energy density lithium-sulfur batteries: Promises and challenges [J]. Journal of the Electrochemical Society, 2017, 165(1): A6008–A6016. DOI: https://doi.org/10.1149/2.0041801jes.

    Article  Google Scholar 

  10. ZENG Fang-lei, YUAN Ke-guo, WANG An-bang, WANG Wei-kun, JIN Zhao-qing, YANG Yu-sheng. Enhanced Li-S batteries using cation-functionalized pigment nanocarbon in core-shell structured composite cathodes [J]. Journal of Materials Chemistry A, 2017, 5(11): 5559–5567. DOI: https://doi.org/10.1039/C6TA10447A.

    Article  Google Scholar 

  11. ZHANG S S. Role of LiNO3 in rechargeable lithium/sulfur battery [J]. Electrochimica Acta, 2012, 70: 344–348. DOI: https://doi.org/10.1016/j.electacta.2012.03.081.

    Article  Google Scholar 

  12. LIN Hua, CHEN Kang-hua, SHUAI Yi, HE Xuan, GE Ke. Influence of CsNO3 as electrolyte additive on electrochemical property of lithium anode in rechargeable battery [J]. Journal of Central South University, 2018, 25(4): 719–728. DOI: https://doi.org/10.1007/s11771-018-3776-x.

    Article  Google Scholar 

  13. LI Qian, ZENG Fang-lei, GUAN Yue-peng, JIN Zhao-qing, HUANG Ya-qin, YAO Ming, WANG Wei-kun, WANG Anbang. Poly (dimethylsiloxane) modified lithium anode for enhanced performance of lithium-sulfur batteries [J]. Energy Storage Materials, 2018, 13: 151–159. DOI: https://doi.org/10.1016/j.ensm.2018.01.002.

    Article  Google Scholar 

  14. XU Rui, CHENG Xin-bing, YAN Chong, ZHANG Xue-qiang, XIAO Ye, ZHAO Chen-zi, HUANG Jia-qi, ZHANG Qiang. Artificial interphases for highly stable lithium metal anode [J]. Matter, 2019, 1(2): 317–344. DOI: https://doi.org/10.1016/j.matt.2019.05.016.

    Article  Google Scholar 

  15. CHENG Xin-bing, PENG Hong-jie, HUANG Jia-qi, WEI Fei, ZHANG Qiang. Dendrite-free nanostructured anode: Entrapment of lithium in a 3D fibrous matrix for ultra-stable lithium-sulfur batteries [J]. Small, 2014, 10(21): 4257–4263. DOI: https://doi.org/10.1002/smll.201401837.

    Article  Google Scholar 

  16. ZHANG Rui, LI Nian-wu, CHENG Xin-bing, YIN Ya-xia, ZHANG Qiang, GUO Yu-guo. Advanced micro/nanostructures for lithium metal anodes [J]. Advanced Science, 2017, 4(3): 1600445. DOI: https://doi.org/10.1002/advs.201600445.

    Article  Google Scholar 

  17. YE Huan, ZHENG Zi-jian, YAO Hu-rong, LIU Shun-chang, ZUO Tong-tong, WU Xiong-wei, YIN Ya-xia, LI Nian-wu, GU Jiang-jiang, CAO Fei-fei, GUO Yu-guo. Guiding uniform Li plating/stripping through lithium-aluminum alloying medium for long-life Li metal batteries [J]. Angewandte Chemie, 2019, 131(4): 1106–1111. DOI: https://doi.org/10.1002/ange.201811955.

    Article  Google Scholar 

  18. YE Huan, XIN Sen, YIN Ya-xia, LI Jin-yi, GUO Yu-guo, WAN Li-jun. Stable Li plating/stripping electrochemistry realized by a hybrid Li reservoir in spherical carbon granules with 3D conducting skeletons [J]. Journal of the American Chemical Society, 2017, 139(16): 5916–5922. DOI: https://doi.org/10.1021/jacs.7b01763.

    Article  Google Scholar 

  19. WANG Tian-shi, LIU Yong-chang, LU Ya-xiang, HU Yong-sheng, FAN Li-zhen. Dendrite-free Na metal plating/stripping onto 3D porous Cu hosts [J]. Energy Storage Materials, 2018, 15: 274–281. DOI: https://doi.org/10.1016/j.ensm.2018.05.016.

    Article  Google Scholar 

  20. HUANG S, CHEN L, WANG T, HU J, ZHANG Q, ZHANG H, NAN C, FAN L Z. Self-propagating enabling high lithium metal utilization ratio composite anodes for lithium metal batteries [J]. Nano Letters, 2021, 21(1): 791–797. DOI: https://doi.org/10.1021/acs.nanolett.0c04546.

    Article  Google Scholar 

  21. LU Lei-lei, GE Jin, YANG Jun-nan, CHEN Si-ming, YAO Hong-bin, ZHOU Fei, YU Shu-hong. Free-standing copper nanowire network current collector for improving lithium anode performance [J]. Nano Letters, 2016, 16(7): 4431–4437. DOI: https://doi.org/10.1021/acs.nanolett.6b01581.

    Article  Google Scholar 

  22. JANA M, XU Rui, CHENG Xin-bing, YEON J S, PARK J M, HUANG Jia-qi, ZHANG Qiang, PARK H S. Rational design of two-dimensional nanomaterials for lithium-sulfur batteries [J]. Energy & Environmental Science, 2020, 13(4): 1049–1075. DOI: https://doi.org/10.1039/C9EE02049G.

    Article  Google Scholar 

  23. MIAO L, WANG W, YUAN K, YANG Y, WANG A. A lithium-sulfur cathode with high sulfur loading and high capacity per area: A binder-free carbon fiber cloth-sulfur material [J]. Chemical Communications (Cambridge, England), 2014, 50(87): 13231–13234. DOI: https://doi.org/10.1039/c4cc03410d.

    Article  Google Scholar 

  24. HONG Xiao-dong, WANG Rui, LIU Yue, FU Jia-wei, LIANG Ji, DOU Shi-xue. Recent advances in chemical adsorption and catalytic conversion materials for Li-S batteries [J]. Journal of Energy Chemistry, 2020, 42: 144–168. DOI: https://doi.org/10.1016/j.jechem.2019.07.001.

    Article  Google Scholar 

  25. LI G, LU F, DOU X, WANG X, LUO D, SUN H, YU A, CHEN Z. Polysulfide regulation by the zwitterionic barrier toward durable lithium-sulfur batteries [J]. Journal of the American Chemical Society, 2020, 142(7): 3583–3592. DOI: https://doi.org/10.1021/jac.

    Article  Google Scholar 

  26. ZHANG Teng, ZHANG Long, ZHAO Li-na, HUANG Xiao-xiao, HOU Yang-long. Catalytic effects in the cathode of Li-S batteries: Accelerating polysulfides redox conversion [J]. EnergyChem, 2020, 2(4): 100036. DOI: https://doi.org/10.1016/j.enchem.2020.100036.

    Article  Google Scholar 

  27. ZHANG Zhi-qi, LIU Jia-peng, CURCIO A, WANG Yu-hao, WU Jun-xiong, ZHOU Guo-dong, TANG Zheng-hua, CIUCCI F. Atomically dispersed materials for rechargeable batteries [J]. Nano Energy, 2020, 76: 105085. DOI: https://doi.org/10.1016/j.nanoen.2020.105085.

    Article  Google Scholar 

  28. JIN Zhao-qing, XIE Kai, HONG Xiao-bin, HU Zong-qian, LIU Xiang. Application of lithiated Nafion ionomer film as functional separator for lithium sulfur cells [J]. Journal of Power Sources, 2012, 218: 163–167. DOI: https://doi.org/10.1016/j.jpowsour.2012.06.100.

    Article  Google Scholar 

  29. APPETECCHI G B, DAUTZENBERG G, SCROSATI B. A new class of advanced polymer electrolytes and their relevance in plastic-like, rechargeable lithium batteries [J]. Journal of the Electrochemical Society, 1996, 143(1): 6–12. DOI: https://doi.org/10.1149/1.1836379.

    Article  Google Scholar 

  30. LI Guo-jie, GUAN Xu-ze, WANG Ao-xuan, WANG Cheng-zhi, LUO Jia-yan. Cations and anions regulation through zwitterionic gel electrolytes for stable lithium metal anodes [J]. Energy Storage Materials, 2020, 24: 574–578. DOI: https://doi.org/10.1016/j.ensm.2019.06.030.

    Article  Google Scholar 

  31. JIANG Jiang-hui, WANG An-bang, WANG Wei-kun, JIN Zhao-qing, FAN Li-zhen. P(VDF-HFP)-poly(sulfur-1, 3-diisopropenylbenzene) functional polymer electrolyte for lithium-sulfur batteries [J]. Journal of Energy Chemistry, 2020, 46: 114–122. DOI: https://doi.org/10.1016/j.jechem.2019.10.009.

    Article  Google Scholar 

  32. ZHANG S S. A concept for making poly(ethylene oxide) based composite gel polymer electrolyte lithium/sulfur battery [J]. Journal of the Electrochemical Society, 2013, 160(9): A1421–A1424. DOI: https://doi.org/10.1149/2.058309jes.

    Article  Google Scholar 

  33. ZHU Jia-deng, ZHU Pei, YAN Chao-yi, DONG Xia, ZHANG Xiang-wu. Recent progress in polymer materials for advanced lithium-sulfur batteries [J]. Progress in Polymer Science, 2019, 90: 118–163. DOI: https://doi.org/10.1016/j.progpolymsci.2018.12.002.

    Article  Google Scholar 

  34. XIA Y, LIANG Y F, XIE D, WANG X L, ZHANG S Z, XIA X H, GU C D, TU J P. A poly (vinylidene fluoride-hexafluoropropylene) based three-dimensional network gel polymer electrolyte for solid-state lithium-sulfur batteries [J]. Chemical Engineering Journal, 2019, 358: 1047–1053. DOI: https://doi.org/10.1016/j.cej.2018.10.092.

    Article  Google Scholar 

  35. AURBACH D, ZINIGRAD E, COHEN Y, TELLER H. A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions [J]. Solid State Ionics, 2002, 148(3, 4): 405–416. DOI: https://doi.org/10.1016/S0167-2738(02)00080-2.

    Article  Google Scholar 

  36. CHENG Yuan-yuan, ZHANG Lan, XU Song, ZHANG Hai-tao, REN Bao-zeng, LI Tao, ZHANG Suo-jiang. Ionic liquid functionalized electrospun gel polymer electrolyte for use in a high-performance lithium metal battery [J]. Journal of Materials Chemistry A, 2018, 6(38): 18479–18487. DOI: https://doi.org/10.1039/C8TA06338A.

    Article  Google Scholar 

  37. HAN Dian-dian, WANG Zhen-yu, PAN Gui-ling, GAO Xue-ping. Metal-organic-framework-based gel polymer electrolyte with immobilized anions to stabilize a lithium anode for a quasi-solid-state lithium-sulfur battery [J]. ACS Applied Materials & Interfaces, 2019, 11(20): 18427–18435. DOI: https://doi.org/10.1021/acsami.9b03682.

    Article  Google Scholar 

  38. WANG Ya-nan, FU Li-xin, SHI Li-yi, WANG Zhu-yi, ZHU Jie-fang, ZHAO Yin, YUAN Shuai. Gel polymer electrolyte with high Li+ transference number enhancing the cycling stability of lithium anodes [J]. ACS Applied Materials & Interfaces, 2019, 11(5): 5168–5175. DOI: https://doi.org/10.1021/acsami.8b21352.

    Article  Google Scholar 

  39. CHEN Long, LI Wen-xin, FAN Li-zhen, NAN Ce-wen, ZHANG Qiang. Intercalated electrolyte with high transference number for dendrite-free solid-state lithium batteries [J]. Advanced Functional Materials, 2019, 29(28): 1901047. DOI: https://doi.org/10.1002/adfm.201901047.

    Article  Google Scholar 

  40. CHAZALVIEL J N. Electrochemical aspects of the generation of ramified metallic electrodeposits [J]. Physical Review A, Atomic, Molecular, and Optical Physics, 1990, 42(12): 7355–7367. DOI: https://doi.org/10.1103/physreva.42.7355.

    Article  Google Scholar 

  41. LI Zhong, LU Wen-hao, ZHANG Nan, PAN Qi-yun, CHEN Ya-zhou, XU Guo-dong, ZENG Dan-li, ZHANG Yun-feng, CAI Wei-wei, et al. Single ion conducting lithium sulfur polymer batteries with improved safety and stability [J]. Journal of Materials Chemistry A, 2018, 6(29): 14330–14338. DOI: https://doi.org/10.1039/c8ta04619k.

    Article  Google Scholar 

  42. HUANG Hui-jia, DING Fei, ZHONG Hai, LI Huan, ZHANG Wei-guo, LIU Xing-jiang, XU Qiang. Nano-SiO2-embedded poly(propylene carbonate)-based composite gel polymer electrolyte for lithium-sulfur batteries [J]. Journal of Materials Chemistry A, 2018, 6(20): 9539–9549. DOI: https://doi.org/10.1039/c8ta03061h.

    Article  Google Scholar 

  43. LI L, PASCAL T A, CONNELL J G, FAN F Y, MECKLER S M, MA L, CHIANG Y M, PRENDERGAST D, HELMS B A. Molecular understanding of polyelectrolyte binders that actively regulate ion transport in sulfur cathodes [J]. Nature Communications, 2017, 8(1): 2277. DOI: https://doi.org/10.1038/s41467-017-02410-6.

    Article  Google Scholar 

  44. LI Long-jun, MA Lin, HELMS B A. Architected macroporous polyelectrolytes that suppress dendrite formation during high-rate lithium metal electrodeposition [J]. Macromolecules, 2018, 51(19): 7666–7671. DOI: https://doi.org/10.1021/acs.macromol.8b01188.

    Article  Google Scholar 

  45. PONT A L, MARCILLA R, DE MEATZA I, GRANDE H, MECERREYES D. Pyrrolidinium-based polymeric ionic liquids as mechanically and electrochemically stable polymer electrolytes [J]. Journal of Power Sources, 2009, 188(2): 558–563. DOI: https://doi.org/10.1016/j.jpowsour.2008.11.115.

    Article  Google Scholar 

Download references

Funding

Project(21935006) supported by the National Natural Science Foundation of China

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhao-qing Jin  (金朝庆) or Wei-kun Wang  (王维坤).

Additional information

Contributors

WANG Zi-long conducted partial experiments, performed data analysis and edited the draft of manuscript. JIANG Jiang-hui conducted partial experiments and wrote the first draft of the manuscript. LU Jian-hao performed data analysis. WANG An-bang, JIN Zhao-qing and WANG Wei-kun provided the concept and conducted the literature review.

Conflict of interest

WANG Zi-long, JIANG Jiang-hui, LU Jian-hao, WANG An-bang, JIN Zhao-qing, WANG Wei-kun declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Zl., Jiang, Jh., Lu, Jh. et al. Bifunctional polymer electrolyte with higher lithium-ion transference number for lithium-sulfur batteries. J. Cent. South Univ. 28, 3681–3693 (2021). https://doi.org/10.1007/s11771-021-4881-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-021-4881-9

Key words

关键词

Navigation