Skip to main content

Advertisement

Log in

Nb2CTx MXene boosting PEO polymer electrolyte for all-solid-state Li-S batteries: two birds with one stone strategy to enhance Li+ conductivity and polysulfide adsorptivity

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

All-solid-state lithium-sulfur (Li-S) battery is regarded as next-generation high energy density and safety battery system. The key challenge is to develop a compatible high-performance solid-state electrolyte. Herein, a two birds with one stone strategy is proposed to simultaneously enhance Li+ conductivity and polysulfide adsorptivity of poly(ethylene oxide) (PEO)-based polymer electrolyte via the integration of Nb2CTx MXene. Moreover, the sheet size of Nb2CTx MXene is crucial for the enhancement of Li+ conductivity and polysulfide adsorptivity, attributing to the difference in a specific surface area related to the percolation effect. By tuning the sheet size of Nb2CTx MXene from 500–300 nm to below 100 nm, the ionic conductivity of the PEO electrolyte is increased to 2.62 × 10−4 S·cm−1 with improved Li+ transference number of 0.37 at 60 °C. Furthermore, theoretical calculation and X-ray photoelectron spectroscopy (XPS) conjointly prove that polysulfides could be effectively adsorbed by Nb2CTx nanosheets via forming Nb−S bonding to inhibit their shuttle in the PEO framework. As a result, the all-solid-state Li-S cell exhibits an initial capacity of 1149 mAh·g−1 at 0.5C and good cycling stability with 491 mAh·g−1 after 200 cycles. The results demonstrate the necessity of polysulfide inhibition and the application of Nb2CTx MXene in PEO-based electrolytes for all-solid-state Li-S batteries.

Graphic Abstract

摘要

全固态锂硫电池兼具高能量密度和高安全性,有望成为下一代新型电池体系。聚环氧乙烷(PEO)固态电解质加工性能好、解离锂盐能力强、电压窗口能很好兼容锂硫电池,但PEO室温离子电导率低,电池运行需要在熔融温度下,造成部分多硫离子的溶解与穿梭。本文提出了一种“一石二鸟”的策略,通过二维Nb2CTx MXene纳米片填充PEO电解质,同时提高PEO传导Li+和吸附多硫离子抑制其穿梭的能力。二维Nb2CTx纳米片的尺寸大小对渗流效应具有重要影响,进而决定了Li+传导能力和多硫离子吸附的改善效果。通过真空条件下高功率超声处理调节Nb2CTx纳米片尺寸,随着片径从500 nm减小到100 nm以下,60℃下PEO/ Nb2CTx 复合电解质的离子电导率提高到了2.62×10−4 S·cm−1, Li+迁移数提高到0.37。此外,理论计算和X射线光电子能谱(XPS)分析表明Nb2CTx纳米片通过形成Nb‒S键有效吸附多硫离子,抑制其在熔融PEO中的穿梭。所组装全固态锂硫扣式电池在0.5C下的初始容量为1149 mA·g−1,循环200圈后的可逆容量为491 mAh·g−1,与未改性的PEO电解质相比改善明显。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Seh ZW, Sun Y, Zhang Q, Cui Y. Designing high-energy lithium-sulfur batteries. Chem Soc Rev. 2016;45(20):5605. https://doi.org/10.1039/C5CS00410A.

    Article  CAS  Google Scholar 

  2. Al SH, Babu G, Rao CV, Arava LM. Electrocatalytic polysulfide traps for controlling redox shuttle process of Li-S batteries. J Am Chem Soc. 2015;137(36):11542. https://doi.org/10.1021/jacs.5b04472.

    Article  CAS  Google Scholar 

  3. Chen M, Cao W, Wang L, Ma X, Han K. Chessboard-like silicon/graphite anodes with high cycling stability toward practical lithium-ion batteries. ACS Appl Energy Mater. 2020;4(1):775. https://doi.org/10.1021/acsaem.0c02621.

    Article  CAS  Google Scholar 

  4. Xie Y, Chen X, Han K, Xiong X. Natural halloysite nanotubes-coated polypropylene membrane as Dual-function separator for highly safe Li-ion batteries with improved cycling and thermal stability. Electrochim Acta. 2021;379:138182. https://doi.org/10.1016/j.electacta.2021.138182.

    Article  CAS  Google Scholar 

  5. Tao Y, Wei Y, Liu Y, Wang J, Qiao W, Ling L, Long D. Kinetically-enhanced polysulfide redox reactions by Nb2O5 nanocrystals for high-rate lithium-sulfur battery. Energy Environ Sci. 2016;9(10):3230. https://doi.org/10.1039/C6EE01662F.

    Article  CAS  Google Scholar 

  6. Liu Y, Wei Z, Zhong B, Wang H, Xia L, Zhang T, Duan X, Jia D, Zhou Y, Huang X. O-, N-coordinated single Mn atoms accelerating polysulfides transformation in lithium-sulfur batteries. Energy Storage Mater. 2021;35:12. https://doi.org/10.1016/j.ensm.2020.11.011.

    Article  Google Scholar 

  7. Wu F, Ye YS, Huang JQ, Zhao T, Qian J, Zhao YY, Li L, Wei L, Luo R, Huang YX, Xing Y, Chen RJ. Sulfur nanodots stitched in 2D bubble-like interconnected carbon fabric as reversibility-enhanced cathodes for lithium-sulfur batteries. ACS Nano. 2017;11(5):4694. https://doi.org/10.1021/acsnano.7b00596.

    Article  CAS  Google Scholar 

  8. Zhou T, Lv W, Li J, Zhou G, Zhao Y, Fan S, Liu B, Li B, Kang F, Yang QH. Twinborn TiO2–TiN heterostructures enabling smooth trapping-diffusion-conversion of polysulfides towards ultralong life lithium-sulfur batteries. Energy Environ Sci. 2017;10(7):1694. https://doi.org/10.1039/C7EE01430A.

    Article  CAS  Google Scholar 

  9. Jiao L, Zhang C, Geng C, Wu S, Li H, Lv W, Tao Y, Chen Z, Zhou G, Li J, Ling G, Wan Y, Yang QH. Capture and catalytic conversion of polysulfides by in situ built TiO2-MXene heterostructures for lithium-sulfur batteries. Adv Energy Mater. 2019;9(19):1900219. https://doi.org/10.1002/aenm.201900219.

    Article  CAS  Google Scholar 

  10. Huang JQ, Zhuang TZ, Zhang Q, Peng HJ, Chen CM, Wei F. Permselective graphene oxide membrane for highly stable and anti-self-discharge lithium-sulfur batteries. ACS Nano. 2015;9(3):3002. https://doi.org/10.1021/nn507178a.

    Article  CAS  Google Scholar 

  11. Chen B, Deng S, Jiang M, Wu M, Wu J, Yao X. Intimate triple phase interfaces confined in two-dimensional ordered mesoporous carbon towards high-performance all-solid-state lithium-sulfur batteries. Chem Eng J. 2022;448:137712. https://doi.org/10.1016/j.cej.2022.137712.

    Article  CAS  Google Scholar 

  12. Lin Z, Liu Z, Fu W, Dudney NJ, Liang C. Phosphorous pentasulfide as a novel additive for high-performance lithium-sulfur batteries. Adv Funct Mater. 2013;23(8):1064. https://doi.org/10.1002/adfm.201200696.

    Article  CAS  Google Scholar 

  13. Li M, Li X, Tung V, Li Y, Lai Z. Protection of lithium anode by a highly porous PVDF membrane for high-performance Li-S battery. ACS Appl Energy Mater. 2020;3(3):2510. https://doi.org/10.1021/acsaem.9b02211.

    Article  CAS  Google Scholar 

  14. Xia S, Zhang X, Liang C, Yu Y, Liu W. Stabilized lithium metal anode by an efficient coating for high-performance Li-S batteries. Energy Storage Mater. 2020;24:329. https://doi.org/10.1016/j.ensm.2019.07.042.

    Article  Google Scholar 

  15. Liu G, Shi J, Zhu M, Weng W, Shen L, Yang J, Yao X. Ultra-thin free-standing sulfide solid electrolyte film for cell-level high energy density all-solid-state lithium batteries. Energy Storage Mater. 2021;38:249. https://doi.org/10.1016/j.ensm.2021.03.017.

    Article  Google Scholar 

  16. Wu J, Liu S, Han F, Yao X, Wang C. Lithium/sulfide all-solid-state batteries using sulfide electrolytes. Adv Mater. 2021;33(6):2000751. https://doi.org/10.1002/adma.202000751.

    Article  CAS  Google Scholar 

  17. Zhao Q, Stalin S, Zhao CZ, Archer LA. Designing solid-state electrolytes for safe, energy-dense batteries. Nat Rev Mater. 2020;5(3):229. https://doi.org/10.1038/s41578-019-0165-5.

    Article  CAS  Google Scholar 

  18. Jiang M, Zhang Z, Tang B, Dong T, Xu H, Zhang H, Lu X, Cui G. Polymer electrolytes for Li-S batteries: polymeric fundamentals and performance optimization. J Energy Chem. 2021;58:300. https://doi.org/10.1016/j.jechem.2020.10.009.

    Article  CAS  Google Scholar 

  19. Zheng Y, Li X, Li CY. A novel de-coupling solid polymer electrolyte via semi-interpenetrating network for lithium metal battery. Energy Stor Mater. 2020;29:42. https://doi.org/10.1016/j.ensm.2020.04.002.

    Article  Google Scholar 

  20. Zhu L, Zhu P, Yao S, Shen X, Tu F. High-performance solid PEO/PPC/LLTO-nanowires polymer composite electrolyte for solid-state lithium battery. Int J Energy Res. 2019;43(9):4854. https://doi.org/10.1002/er.4638.

    Article  CAS  Google Scholar 

  21. Judez X, Zhang H, Li C, Gonzalez-Marcos JA, Zhou Z, Armand M, Rodriguez-Martinez LM. Lithium bis(fluorosulfonyl)imide/poly(ethylene oxide) polymer electrolyte for all solid-state Li-S cell. J Phys Chem Lett. 2017;8(9):1956. https://doi.org/10.1021/acs.jpclett.7b00593.

    Article  CAS  Google Scholar 

  22. Quartarone E, Mustarelli P, Magistris A. PEO-based composite polymer electrolytes. Solid State Ionics. 1998;110(1):1. https://doi.org/10.1016/S0167-2738(98)00114-3.

    Article  CAS  Google Scholar 

  23. Fauteux D, Massucco A, McLin M, Van Buren M, Shi J. Lithium polymer electrolyte rechargeable battery. Electrochim Acta. 1995;40(13):2185. https://doi.org/10.1016/0013-4686(95)00161-7.

    Article  CAS  Google Scholar 

  24. Wu N, Chien PH, Qian Y, Li Y, Xu H, Grundish NS, Xu B, Jin H, Hu YY, Yu G, Goodenough JB. Enhanced surface interactions enable fast Li+ conduction in oxide/polymer composite electrolyte. Angew Chem Int Ed. 2020;59(10):4131. https://doi.org/10.1002/anie.201914478.

    Article  CAS  Google Scholar 

  25. Suriyakumar S, Gopi S, Kathiresan M, Bose S, Gowd EB, Nair JR, Angulakshmi N, Meligrana G, Bella F, Gerbaldi C, Stephan AM. Metal organic framework laden poly(ethylene oxide) based composite electrolytes for all-solid-state Li-S and Li-metal polymer batteries. Electrochim Acta. 2018;285:355. https://doi.org/10.1016/j.electacta.2018.08.012.

    Article  CAS  Google Scholar 

  26. Lin Y, Wang X, Liu J, Miller JD. Natural halloysite nano-clay electrolyte for advanced all-Solid-state lithium-sulfur batteries. Nano Energy. 2017;31:478. https://doi.org/10.1016/j.nanoen.2016.11.045.

    Article  CAS  Google Scholar 

  27. Tao X, Liu Y, Liu W, Zhou G, Zhao J, Lin D, Zu C, Sheng O, Zhang W, Lee HW, Cui Y. Solid-state lithium-sulfur batteries operated at 37 degrees C with composites of nanostructured Li7La3Zr2O12/carbon foam and polymer. Nano Lett. 2017;17(5):2967. https://doi.org/10.1021/acs.nanolett.7b00221.

    Article  CAS  Google Scholar 

  28. Kou W, Wang J, Li W, Lv R, Peng N, Wu W, Wang J. Asymmetry-structure electrolyte with rapid Li+ transfer pathway towards high-performance all-solid-state lithium-sulfur battery. J Membr Sci. 2021;634:119432. https://doi.org/10.1016/j.memsci.2021.119432.

    Article  CAS  Google Scholar 

  29. Kou ZY, Lu Y, Miao C, Li JQ, Liu CJ, Xiao W. High-performance sandwiched hybrid solid electrolytes by coating polymer layers for all-solid-state lithium-ion batteries. Rare Met. 2021;40(11):317. https://doi.org/10.1007/s12598-020-01678-w.

    Article  CAS  Google Scholar 

  30. Li X, Wang D, Wang H, Yan H, Gong Z, Yang Y. Poly(ethylene oxide)-Li10SnP2S12 composite polymer electrolyte enables high-performance all-solid-state lithium sulfur battery. ACS Appl Mater Interfaces. 2019;11(25):1602923. https://doi.org/10.1021/acsami.9b05212.

    Article  CAS  Google Scholar 

  31. He Q, Gorlin Y, Patel MUM, Gasteiger HA, Lu YC. Unraveling the correlation between solvent properties and sulfur redox behavior in lithium-sulfur batteries. J Electrochem Soc. 2018;165(16):A4027. https://doi.org/10.1149/2.0991816jes.

    Article  CAS  Google Scholar 

  32. Fang R, Xu H, Xu B, Li X, Li Y, Goodenough JB. Reaction mechanism optimization of solid-state Li-S batteries with a PEO-based electrolyte. Adv Funct Mater. 2020;31(2):2001812. https://doi.org/10.1002/adfm.202001812.

    Article  CAS  Google Scholar 

  33. Liu Y, Liu H, Lin Y, Zhao Y, Yuan H, Su Y, Zhang J, Ren S, Fan H, Zhang Y. Mechanistic investigation of polymer-based all-solid-state lithium/sulfur battery. Adv Funct Mater. 2021;31(14):2101863. https://doi.org/10.1002/adfm.202104863.

    Article  CAS  Google Scholar 

  34. Zhang H, Oteo U, Judez X, Eshetu GG, Martinez-Ibañez M, Carrasco J, Li C, Armand M. Designer anion enabling solid-state lithium-sulfur batteries. Joule. 2019;3(7):1689. https://doi.org/10.1016/j.joule.2019.05.003.

    Article  CAS  Google Scholar 

  35. Song YX, Shi Y, Wan J, Lang SY, Hu XC, Yan HJ, Liu B, Guo YG, Wen R, Wan LJ. Direct tracking of the polysulfide shuttling and interfacial evolution in all-solid-state lithium-sulfur batteries: a degradation mechanism study. Energy Environ Sci. 2019;12(8):2496. https://doi.org/10.1039/c9ee00578a.

    Article  CAS  Google Scholar 

  36. Eshetu GG, Judez X, Li C, Martinez-Ibanez M, Gracia I, Bondarchuk O, Carrasco J, Rodriguez-Martinez LM, Zhang H, Armand M. Ultrahigh performance all solid-state lithium sulfur batteries: salt anion’s chemistry-induced anomalous synergistic effect. J Am Chem Soc. 2018;140(31):9921. https://doi.org/10.1021/jacs.8b04612.

    Article  CAS  Google Scholar 

  37. Zhu Q, Xu HF, Shen K, Zhang YZ, Li B, Yang SB. Efficient polysulfides conversion on Mo2CTx MXene for high-performance lithium-sulfur batteries. Rare Met. 2022;41(1):311. https://doi.org/10.1007/s12598-021-01839-5.

    Article  CAS  Google Scholar 

  38. Mashtalir O, Lukatskaya MR, Zhao MQ, Barsoum MW, Gogotsi Y. Amine-assisted delamination of Nb2C MXene for Li-ion energy storage devices. Adv Mater. 2015;27(23):3501. https://doi.org/10.1002/adma.201500604.

    Article  CAS  Google Scholar 

  39. Naguib M, Mashtalir O, Carle J, Presser V, Lu J, Hultman L, Gogotsi Y, Barsoum MW. Two-dimensional transition metal carbides. ACS Nano. 2012;6(2):1322. https://doi.org/10.1021/nn204153h.

    Article  CAS  Google Scholar 

  40. Zhou HY, Sui ZY, Amin K, Lin LW, Wang HY, Han BH. Investigating the electrocatalysis of a Ti3C2/carbon hybrid in polysulfide conversion of lithium-sulfur batteries. ACS Appl Mater Interfaces. 2020;12(12):13904. https://doi.org/10.1021/acsami.9b23006.

    Article  CAS  Google Scholar 

  41. Zhang Y, Mu Z, Yang C, Xu Z, Zhang S, Zhang X, Li Y, Lai J, Sun Z, Yang Y, Chao Y, Li C, Ge X, Yang W, Guo S. Rational design of MXene/1T-2H MoS2-C nanohybrids for high-performance lithium-sulfur batteries. Adv Funct Mater. 2018;28(38):1707578. https://doi.org/10.1002/adfm.201707578.

    Article  CAS  Google Scholar 

  42. Li Z, Huang HM, Zhu JK, Wu JF, Yang H, Wei L, Guo X. Ionic conduction in composite polymer electrolytes: case of PEO:Ga-LLZO composites. ACS Appl Mater Interfaces. 2019;11(1):784. https://doi.org/10.1021/acsami.8b17279.

    Article  CAS  Google Scholar 

  43. Zhou Q, Ma J, Dong S, Li X, Cui G. Intermolecular chemistry in solid polymer electrolytes for high-energy-density lithium batteries. Adv Mater. 2019;31(50):1902029. https://doi.org/10.1002/adma.201902029.

    Article  CAS  Google Scholar 

  44. Zhang J, Zhao N, Zhang M, Li Y, Chu PK, Guo X, Di Z, Wang X, Li H. Flexible and ion-conducting membrane electrolytes for solid-state lithium batteries: dispersion of garnet nanoparticles in insulating polyethylene oxide. Nano Energy. 2016;28:447. https://doi.org/10.1016/j.nanoen.2016.09.002.

    Article  CAS  Google Scholar 

  45. Delley B. An all-electron numerical method for solving the local density functional for polyatomic molecules. J Chem Phys. 1990;92(1):508. https://doi.org/10.1063/1.458452.

    Article  CAS  Google Scholar 

  46. Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77(18):3865. https://doi.org/10.1103/PhysRevLett.77.3865.

    Article  CAS  Google Scholar 

  47. Li G, Li N, Peng S, He B, Wang J, Du Y, Zhang W, Han K, Dang F. Highly efficient Nb2C MXene cathode catalyst with uniform O-terminated surface for lithium-oxygen batteries. Adv Energy Mater. 2020;11(1):2002721. https://doi.org/10.1002/aenm.202002721.

    Article  CAS  Google Scholar 

  48. Yang S, Liu Z, Liu Y, Jiao Y. Effect of molecular weight on conformational changes of PEO: an infrared spectroscopic analysis. J Mater Sci. 2015;50(4):1544. https://doi.org/10.1007/s10853-014-8714-1.

    Article  CAS  Google Scholar 

  49. Yamada H, Bhattacharyya AJ, Maier J. Extremely high silver ionic conductivity in composites of silver halide (AgBr, AgI) and mesoporous alumina. Adv Funct Mater. 2006;16(4):525. https://doi.org/10.1002/adfm.200500538.

    Article  CAS  Google Scholar 

  50. Song YW, Heo K, Lee J, Hwang D, Kim MY, Kim SJ, Kim J, Lim J. Lithium-ion transport in inorganic active fillers used in PEO-based composite solid electrolyte sheets. RSC Adv. 2021;11(51):31855. https://doi.org/10.1039/d1ra06210g.

    Article  CAS  Google Scholar 

  51. Zhang W, Zhuang HL, Fan L, Gao L, Lu Y. A cation-anion regulation synergistic anode host for dendrite-free lithium metal batteries. Sci Adv. 2018;4(2):earr4410. https://doi.org/10.1126/sciadv.aar4410.

    Article  CAS  Google Scholar 

  52. Wen SJ, Richardson TJ, Ghantous DI, Striebel KA, Ross PN, Cairns EJ. FTIR characterization of PEO+LiN(CF3SO2)2 electrolytes. J Electroanal Chem. 1996;408(1):113. https://doi.org/10.1016/0022-0728(96)04536-6.

    Article  Google Scholar 

  53. Kim K, Kuhn L, Alabugin IV, Hallinan DT. Lithium salt dissociation in diblock copolymer electrolyte using fourier transform Infrared spectroscopy. Front Energy Res. 2020;8:569442. https://doi.org/10.3389/fenrg.2020.569442.

    Article  Google Scholar 

  54. Yu B, Huang A, Srinivas K, Zhang X, Ma F, Wang X, Chen D, Wang B, Zhang W, Wang Z, He J, Chen Y. Outstanding catalytic effects of 1T′-MoTe2 quantum dots@3D graphene in shuttle-free Li–S batteries. ACS Nano. 2021;15(8):13279. https://doi.org/10.1021/acsnano.1c03011.

    Article  CAS  Google Scholar 

  55. Xu ZL, Lin S, Onofrio N, Zhou L, Shi F, Lu W, Kang K, Zhang Q, Lau SP. Exceptional catalytic effects of black phosphorus quantum dots in shuttling-free lithium sulfur batteries. Nat Commun. 2018;9(1):1. https://doi.org/10.1038/s41467-018-06629-9.

    Article  CAS  Google Scholar 

  56. Hao B, Li H, Lv W, Zhang Y, Niu S, Qi Q, Xiao S, Li J, Kang F, Yang QH. Reviving catalytic activity of nitrides by the doping of the inert surface layer to promote polysulfide conversion in lithium-sulfur batteries. Nano Energy. 2019;60:305. https://doi.org/10.1016/j.nanoen.2019.03.064.

    Article  CAS  Google Scholar 

  57. Han XR, Guo XT, Xu MJ, Pang H, Ma YW. Clean utilization of palm kernel shell: sustainable and naturally heteroatom-doped porous activated carbon for lithium-sulfur batteries. Rare Met. 2020;39(9):1099. https://doi.org/10.1007/s12598-020-01439-9.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the State Key Laboratory of Powder Metallurgy, Hunan Provincial Natural Science Foundation of China (No. 2020JJ4107), the Innovation-Driven Project of Central South University (No. 2020CX037), the Postgraduate Scientific Research Innovation Project of Hunan Province (No. QL20220021), the National Natural Science Foundation of China (No. 51802352) and the Science and Technology Innovation Leading Project of High-Tech Industry of Hunan Province, China (No. 2020GK2067).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li-Chang Wang, Heng Luo or Kai Han.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 10633 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, SM., Chen, MX., Xie, Y. et al. Nb2CTx MXene boosting PEO polymer electrolyte for all-solid-state Li-S batteries: two birds with one stone strategy to enhance Li+ conductivity and polysulfide adsorptivity. Rare Met. 42, 2562–2576 (2023). https://doi.org/10.1007/s12598-022-02260-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-022-02260-2

Keywords

Navigation