Skip to main content
Log in

Suppression of thermal postbuckling and nonlinear panel flutter motions of variable stiffness composite laminates using piezoelectric actuators

变刚度复合材料层合板的热后屈曲和颤振的主动控制

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Variable stiffness composite laminates (VSCLs) are promising in aerospace engineering due to their designable material properties through changing fiber angles and stacking sequences. Aiming to control the thermal postbuckling and nonlinear panel flutter motions of VSCLs, a full-order numerical model is developed based on the linear quadratic regulator (LQR) algorithm in control theory, the classical laminate plate theory (CLPT) considering von Kármán geometrical nonlinearity, and the first-order Piston theory. The critical buckling temperature and the critical aerodynamic pressure of VSCLs are parametrically investigated. The location and shape of piezoelectric actuators for optimal control of the dynamic responses of VSCLs are determined through comparing the norms of feedback control gain (NFCG). Numerical simulations show that the temperature field has a great effect on aeroelastic tailoring of VSCLs; the curvilinear fiber path of VSCLs can significantly affect the optimal location and shape of piezoelectric actuator for flutter suppression; the unstable panel flutter and the thermal postbuckling deflection can be suppressed effectively through optimal design of piezoelectric patches.

摘要

变刚度复合材料层合板可以通过改变纤维角度和铺层顺序来设计其材料性能, 因此在航空航天领域具有广阔的应用前景。本文基于控制理论中的LQR 算法、在经典的层合板理论中考虑几何非线性并结合一阶活塞理论建立了用于分析变刚度板的热后屈曲和气弹性颤振的有限元模型。通过参数分析, 预测了变刚度复合材料板的屈曲温度和临界气动压力。通过比较反馈控制增益(NFCG)的值, 确定了控制变刚度板后屈曲变形和气弹性颤振的压电控制器的最优位置和形状。数值模拟结果表明:温度场对变刚度复合材料板的气动弹性设计有重要的影响;纤维路径的变化对压电控制器的最优位置和形状有显著影响;通过压电片的优化设计, 板的颤振和热后屈曲变形可以得到有效的抑制。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. WALDHART C. Analysis of low-placed, variable-stiness laminates [D]. Virginia Polytechnic Institute and State University, 1996.

  2. LUKASZEWICZ D H J A, WARD C, POTTER K D. The engineering aspects of automated prepreg layup: History, present and future [J]. Composites Part B: Engineering, 2012, 43(3): 997–1009. DOI: https://doi.org/10.1016/j.compositesb.2011.12.003.

    Article  Google Scholar 

  3. HUANG J, HAFTKA R T. Optimization of fiber orientations near a hole for increased load-carrying capacity of composite laminates [J]. Structural and Multidisciplinary Optimization, 2005, 30(5): 335–341. DOI: https://doi.org/10.1007/s00158-005-0519-z.

    Article  Google Scholar 

  4. AKHAVAN H, RIBEIRO P. Natural modes of vibration of variable stiffness composite laminates with curvilinear fibers [J]. Composite Structures, 2011, 93(11): 3040–3047. DOI: https://doi.org/10.1016/j.compstruct.2011.04.027.

    Article  Google Scholar 

  5. WU Zhang-ming, WEAVER P M, RAJU G. Postbuckling optimisation of variable angle tow composite plates [J]. Composite Structures, 2013, 103: 34–42. DOI: https://doi.org/10.1016/j.compstruct.2013.03.004.

    Article  Google Scholar 

  6. DURAN A V, FASANELLA N A, SUNDARARAGHAVAN V, WAAS A M. Thermal buckling of composite plates with spatial varying fiber orientations [J]. Composite Structures, 2015, 124: 228–235. DOI: https://doi.org/10.1016/j.compstruct.2014.12.065.

    Article  Google Scholar 

  7. LOJA M A R, BARBOSA J I, MOTA SOARES C M. Dynamic instability of variable stiffness composite plates [J]. Composite Structures, 2017, 182: 402–411. DOI: https://doi.org/10.1016/j.compstruct.2017.09.046.

    Article  Google Scholar 

  8. STANFORD B K, JUTTE C V, CHAUNCEY W K. Aeroelastic benefits of tow steering for composite plates [J]. Composite Structures, 2014, 118: 416–422. DOI: https://doi.org/10.1016/j.compstruct.2014.08.007.

    Article  Google Scholar 

  9. AKHAVAN H, RIBEIRO P. Aeroelasticity of composite plates with curvilinear fibres in supersonic flow [J]. Composite Structures, 2018, 194: 335–344. DOI: https://doi.org/10.1016/j.compstruct.2018.03.101.

    Article  Google Scholar 

  10. AKHAVAN H, RIBEIRO P. Reduced-order models for nonlinear flutter of composite laminates with curvilinear fibers [J]. AIAA Journal, 2019, 57(7): 3026–3039. DOI: https://doi.org/10.2514/1.j057755.

    Article  Google Scholar 

  11. GUIMARAES T A, CASTRO S G, RADE D A, CESNIK C E. Panel flutter analysis and optimization of composite tow steered plates [C]//58th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, Virginia: AIAA, 2017 DOI: https://doi.org/10.2514/6.2017-1118.

    Google Scholar 

  12. KHALAFI V, FAZILATI J. Supersonic panel flutter of variable stiffness composite laminated skew panels subjected to yawed flow by using NURBS-based isogeometric approach [J]. Journal of Fluids and Structures, 2018, 82: 198–214. DOI: https://doi.org/10.1016/j.jfluidstructs.2018.07.002.

    Article  Google Scholar 

  13. XUE D Y, MEI C. Finite element nonlinear panel flutter with arbitrary temperatures in supersonic flow [J]. AIAA Journal, 1993, 31(1): 154–162. DOI: https://doi.org/10.2514/3.11332.

    Article  Google Scholar 

  14. XUE D Y, MEI C. Finite element nonlinear flutter and fatigue life of two-dimensional panels with temperature effects [J]. Journal of Aircraft, 1993, 30(6): 993–1000. DOI: https://doi.org/10.2514/3.46444.

    Article  Google Scholar 

  15. ZHOU R C, XUE D Y, MEI C. Finite element time domain — Modal formulation for nonlinear flutter of composite panels [J]. AIAA Journal, 1994, 32(10): 2044–2052. DOI: https://doi.org/10.2514/3.12250.

    Article  Google Scholar 

  16. ZHOU R C, MEI C, HUANG J K. Suppression of nonlinear panel flutter at supersonic speeds and elevated temperatures [J]. AIAA Journal, 1996, 34(2): 347–354. DOI: https://doi.org/10.2514/3.13070.

    Article  Google Scholar 

  17. ZHOU R C, LAI Zhi-hong, XUE D Y, HUANG J K, MEI C. Suppression of nonlinear panel flutter with piezoelectric actuators using finite element method [J]. AIAA Journal, 1995, 33(6): 1098–1105. DOI: https://doi.org/10.2514/3.12530.

    Article  Google Scholar 

  18. MOON S H, KIM S J. Active and passive suppressions of nonlinear panel flutter using finite element method [J]. AIAA Journal, 2001, 39(11): 2042–2050. DOI: https://doi.org/10.2514/2.1217.

    Article  Google Scholar 

  19. MOON S H, CHWA D, KIM S J. Feedback linearization control for panel flutter suppression with piezoelectric actuators [J]. AIAA Journal, 2005, 43(9): 2069–2073. DOI: https://doi.org/10.2514/1.12964.

    Article  Google Scholar 

  20. MOON S H, HWANG J S. Panel flutter suppression with an optimal controller based on the nonlinear model using piezoelectric materials [J]. Composite Structures, 2005, 68(3): 371–379. DOI: https://doi.org/10.1016/j.compstruct.2004.04.002.

    Article  Google Scholar 

  21. GUAN Xian-lei, ZHONG Rui, QIN Bin, WANG Qing-shan, SHUAI Ci-jun. A unified prediction solution for vibroacoustic analysis of composite laminated elliptical shells immersed in air [J]. Journal of Central South University, 2021, 28(2): 429–444. DOI: https://doi.org/10.1007/s11771-021-4613-1.

    Article  Google Scholar 

  22. LI Q Q, MEI C, HUANG J K. Suppression of thermal postbuckling and nonlinear panel flutter motions using piezoelectric actuators [J]. AIAA Journal, 2007, 45(8): 1861–1873. DOI: https://doi.org/10.2514/1.28280.

    Article  Google Scholar 

  23. SONG Zhi-guang, LI Feng-ming. Active aeroelastic flutter analysis and vibration control of supersonic beams using the piezoelectric actuator/sensor pairs [J]. Smart Materials and Structures, 2011, 20(5): 055013. DOI: https://doi.org/10.1088/0964-1726/20/5/055013.

    Article  Google Scholar 

  24. SONG Zhi-guang, LI Feng-ming. Optimal locations of piezoelectric actuators and sensors for supersonic flutter control of composite laminated panels [J]. Journal of Vibration and Control, 2014, 20(14): 2118–2132. DOI: https://doi.org/10.1177/107754.

    Article  Google Scholar 

  25. SONG Zhi-guang, LI Feng-ming. Aerothermoelastic analysis and active flutter control of supersonic composite laminated cylindrical shells [J]. Composite Structures, 2013, 106: 653–660. DOI: https://doi.org/10.1016/j.compstruct.2013.07.029.

    Article  Google Scholar 

  26. SONG Zhi-gang, LI Teng-ming, CARRERA E, HAGEDORN P. A new method of smart and optimal flutter control for composite laminated panels in supersonic airflow under thermal effects [J]. Journal of Sound and Vibration, 2018, 414: 218–232. DOI: https://doi.org/10.1016/j.jsv.2017.11.008.

    Article  Google Scholar 

  27. XU Qiang, CHEN Jian-yun, LI Jing, YUAN Chen-yang, ZHAO Chun-feng. Study on LQR control algorithm using superelement model [J]. Journal of Central South University, 2016, 23(9): 2429–2442. DOI: https://doi.org/10.1007/s11771-016-3302-y.

    Article  Google Scholar 

  28. LUO Qing-zhu, AN Ai-min, ZHANG Hao-chen, MENG Fancheng. Non-linear performance analysis and voltage control of MFC based on feedforward fuzzy logic PID strategy [J]. Journal of Central South University, 2019, 26(12): 3359–3371. DOI: https://doi.org/10.1007/s11771-019-4259-4.

    Article  Google Scholar 

  29. GÜRDAL Z, TATTING B F, WU C K. Variable stiffness composite panels: Effects of stiffness variation on the inplane and buckling response [J]. Composites Part A: Applied Science and Manufacturing, 2008, 39(5): 911–922. DOI: https://doi.org/10.1016/j.compositesa.2007.11.015.

    Article  Google Scholar 

  30. GAO Qiang, CAI Xin, GUO Xing-wen, MENG Rui. Parameter sensitivities analysis for classical flutter speed of a horizontal axis wind turbine blade [J]. Journal of Central South University, 2018, 25(7): 1746–1754. DOI: https://doi.org/10.1007/s11771-018-3865-x.

    Article  Google Scholar 

  31. ZHOU Run-chen. Finite element analysis for nonlinear flutter suppression of composite panels at elevated temperatures using piezoelectric materials [D]. Old Dominion University, 1994.

  32. BAVARSAD A, FAKHARIAN A, MENHAJ M B. Nonlinear observerbased optimal control of an active transfemoral prosthesis [J]. Journal of Central South University, 2021, 28(1): 140–152. DOI: https://doi.org/10.1007/s11771-021-4592-2.

    Article  Google Scholar 

  33. CHENG Guang-feng. Finite element modal formulation for panel flutter at hypersonic speeds and elevated temperatures [D]. Old Dominion University, 2002.

Download references

Funding

Project(JCYJ20190808175801656) supported by the Science and Technology Innovation Commission of Shenzhen, China; Project(2021M691427) supported by Postdoctoral Science Foundation of China; Project(9680086) supported by the City University of Hong Kong, China

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng-hui Yi  (易圣辉).

Additional information

Contributors

The overarching research goals were developed by TAO Ji-xiao, YI Sheng-hui, and HE Xiao-qiao. TAO Ji-xiao conducted the literature review and wrote the first draft of the manuscript. YI Sheng-hui, DENG Ya-jie, and HE Xiao-qiao edited the draft of manuscript. All authors replied to reviewers’ comments and revised the final version.

Conflict of interest

TAO Ji-xiao, YI Sheng-hui, DENG Ya-jie, and HE Xiao-qiao declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, Jx., Yi, Sh., Deng, Yj. et al. Suppression of thermal postbuckling and nonlinear panel flutter motions of variable stiffness composite laminates using piezoelectric actuators. J. Cent. South Univ. 28, 3757–3777 (2021). https://doi.org/10.1007/s11771-021-4854-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-021-4854-z

Key words

关键词

Navigation