Skip to main content

Advertisement

Log in

Effect of lamination angle on control performance for composite beams subject to galloping-based flow-induced vibration

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this study, the active vibration control system design of a composite beam with three different lamination angles under forced vibration was investigated. The produced composite beam lamination angles have been selected as {0°, 90°, 0°, 90°}s, {− 30°, 60°, − 30°, 60°}s and {− 45°, 45°, − 45°, 45°}s for investigating the vibration characteristic. Different types of bluff-body geometries were attached to the free end of the cantilever composite beams. In this way, the composite beam's vibration amplitudes have more fluctuated with the help of bluff body geometries. Bluff body structures are generally preferred in energy harvesting applications by increasing the vibration in beams. The fact that this structure, which increases the vibration amplitude, is handled in an active vibration control mechanism adds a different novelty to the subject. Flow-induced vibrations were obtained for a particular period by applying air load on it. Two different geometries of bluff bodies were placed in a freestream airflow at a constant speed to trigger and enhance the vibration of the composite beam. The front surface areas of two different bluff bodies exposed to air load are identical. Therefore, the difference in the vibrations characteristics was only affected by the geometrical differences in the lateral areas of the bluff bodies. To demonstrate this situation, the airfoil efficiency was investigated for the bluff body geometries. A piezoelectric patch is attached to the surface of the composite beam, and the vibration control is acquired utilizing the PID control design. As a result of experimental studies, it has been shown that the forced vibrations on the composite structure can be suppressed successfully with the application of the PID control design.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: The data that support the findings of this study are available from the corresponding author upon reasonable request.]

References

  1. Y. Pu, H. Zhou, Z. Meng, Multi-channel adaptive active vibration control of piezoelectric smart plate with online secondary path modelling using PZT patches. Mech. Syst. Signal Process. 120, 166–179 (2019). https://doi.org/10.1016/j.ymssp.2018.10.019

    Article  ADS  Google Scholar 

  2. S.S. Heganna, J.J. Joglekar, Active vibration control of smart structure using PZT patches. Proc. Comput. Sci. 89, 710–715 (2016). https://doi.org/10.1016/j.procs.2016.06.040

    Article  Google Scholar 

  3. P. Shivashankar, S. Gopalakrishnan, Review on the use of piezoelectric materials for active vibration, noise, and flow control. Smart Mater. Struct. 29(5), 053001 (2020). https://doi.org/10.1088/1361-665X/ab7541

    Article  ADS  Google Scholar 

  4. B. Tang, H. Akbari, M. Pouya, P.V. Pashaki, Application of piezoelectric patches for chatter suppression in machining processes. Measurement 138, 225–231 (2019). https://doi.org/10.1016/j.measurement.2019.02.003

    Article  ADS  Google Scholar 

  5. Z. Arabjamaloei, M. Mofidi, M. Hosseini, R. Bahaadini, Vibration analysis of rotating composite blades with piezoelectric layers in hygrothermal environment. Eur. Phys. J. Plus 134(11), 556 (2019). https://doi.org/10.1140/epjp/i2019-12910-9

    Article  Google Scholar 

  6. M. Li, F. Li, X. Jing, Active vibration control of composite pyramidal lattice truss core sandwich plates. J. Aerosp. Eng. 31(2), 04017097 (2018). https://doi.org/10.1061/(ASCE)AS.1943-5525.0000817

    Article  MathSciNet  Google Scholar 

  7. K. Gurses, B.J. Buckham, E.J. Park, Vibration control of a single-link flexible manipulator using an array of fiber optic curvature sensors and PZT actuators. Mechatronics 19(2), 167–177 (2009). https://doi.org/10.1016/j.mechatronics.2008.09.005

    Article  Google Scholar 

  8. S.M. Kusagur, G. Arunkumar, T.C. Manjunath, Modelling of smart intelligent materials with PZT & PVDF sensors/actuators to control the active vibrations of flexible aluminum mechanical cantilever beams using proportional integral derivative (PID) techniques. Mater. Today Proc. 37, 2075–2082 (2021). https://doi.org/10.1016/j.matpr.2020.07.507

    Article  Google Scholar 

  9. M. Azimi, E.F. Joubaneh, Dynamic modeling and vibration control of a coupled rigid-flexible high-order structural system: a comparative study. Aerosp. Sci. Technol. 102, 105875 (2020). https://doi.org/10.1016/j.ast.2020.105875

    Article  Google Scholar 

  10. X. Yuan, X. Wang, M. Yan, F. Gao, S. Zhang, K. Zhou et al., Effects of composite layer thickness and driving conditions on the actuating performance of shear piezoelectric fiber composite. Measurement 154, 107500 (2020). https://doi.org/10.1016/j.measurement.2020.107500

    Article  Google Scholar 

  11. G. Takács, T. Polóni, B. Rohal-Ilkiv, Adaptive model predictive vibration control of a cantilever beam with real-time parameter estimation. Shock Vib. (2014). https://doi.org/10.1155/2014/741765

    Article  Google Scholar 

  12. A. Oveisi, M. Gudarzi, Adaptive sliding mode vibration control of a nonlinear smart beam: A comparison with self-tuning Ziegler–Nichols PID controller. J. Low Freq. Noise Vib. Active Control 32(1–2), 41–62 (2013). https://doi.org/10.1260/2F0263-0923.32.1-2.41

    Article  Google Scholar 

  13. Q. Zhu, J.Z. Yue, W.Q. Liu, X.D. Wang, J. Chen, G.D. Hu, Active vibration control for piezoelectricity cantilever beam: an adaptive feedforward control method. Smart Mater. Struct. 26(4), 047003 (2017). https://doi.org/10.1088/1361-665X/aa64c6

    Article  ADS  Google Scholar 

  14. S. Sivrioglu, F.C. Bolat, E. Erturk, Active vibration control of a blade element with uncertainty modeling in PZT actuator force. J. Vib. Control 25(21–22), 2721–2732 (2019). https://doi.org/10.1177/2F1077546319868883

    Article  MathSciNet  Google Scholar 

  15. S.H. Youn, J.H. Han, I. Lee, Neuro-adaptive vibration control of composite beams subject to sudden delamination. J. Sound Vib. 238(2), 215–231 (2000). https://doi.org/10.1006/jsvi.2000.3081

    Article  ADS  Google Scholar 

  16. E.H. Koroishi, A.W. Faria, F.A. Lara-Molina, V. Steffen, Fuzzy modal control applied to smart composite structure. J. Phys. Conf. Ser. 628(1), 012090 (2015). https://doi.org/10.1088/1742-6596/628/1/012090

    Article  Google Scholar 

  17. K. Ma, M.N. Ghasemi-Nejhad, Adaptive simultaneous precision positioning and vibration control of intelligent composite structures. J. Intell. Mater. Syst. Struct. 16(2), 163–174 (2005). https://doi.org/10.1177/2F1045389X05048848

    Article  Google Scholar 

  18. E.H. Koroishi, F.A.L. Molina, A.W. Faria, V. Steffen Junior, Robust optimal control applied to a composite laminated beam. J. Aerosp. Technol. Manag. 7(1), 70–80 (2015). https://doi.org/10.5028/jatm.v7i1.389

    Article  Google Scholar 

  19. L.H. Zheng, Y.W. Zhang, H. Ding, L.Q. Chen, Nonlinear vibration suppression of composite laminated beam embedded with NiTiNOL-steel wire ropes. Nonlinear Dyn. 103(3), 2391–2407 (2021). https://doi.org/10.1007/s11071-021-06258-w

    Article  Google Scholar 

  20. M.M. Jovanović, A.M. Simonović, N.D. Zorić, N.S. Lukić, S.N. Stupar, S.S. Ilić, Experimental studies on active vibration control of a smart composite beam using a PID controller. Smart Mater. Struct. 22(11), 115038 (2013). https://doi.org/10.1088/0964-1726/22/11/115038

    Article  ADS  Google Scholar 

  21. A.B. Shakir, A.M. Saber, Active vibration control analysis in smart composite structures using ANSYS. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería (2020). https://doi.org/10.23967/j.rimni.2020.04.001

    Article  Google Scholar 

  22. S. Varadarajan, K. Chandrashekhara, S. Agarwal, LQG/LTR-based robust control of composite beams with piezoelectric devices. J. Vib. Control 6(4), 607–630 (2000). https://doi.org/10.1177/2F107754630000600407

    Article  Google Scholar 

  23. J. Warminski, M. Bochenski, W. Jarzyna, P. Filipek, M. Augustyniak, Active suppression of nonlinear composite beam vibrations by selected control algorithms. Commun. Nonlinear Sci. Numer. Simul. 16(5), 2237–2248 (2011). https://doi.org/10.1016/j.cnsns.2010.04.055

    Article  ADS  Google Scholar 

  24. R. Rimašauskienė, V. Jūrėnas, M. Radzienski, M. Rimašauskas, W. Ostachowicz, Experimental analysis of active–passive vibration control on thin-walled composite beam. Compos. Struct. 223, 110975 (2019). https://doi.org/10.1016/j.compstruct.2019.110975

    Article  Google Scholar 

  25. X.Q. Peng, K.Y. Lam, G.R. Liu, Active vibration control of composite beams with piezoelectrics: a finite element model with third order theory. J. Sound Vib. 209(4), 635–650 (1998). https://doi.org/10.1006/jsvi.1997.1249

    Article  ADS  Google Scholar 

  26. A. Barrero-Gil, G. Alonso, A. Sanz-Andres, Energy harvesting from transverse galloping. J. Sound Vib. 329(14), 2873–2883 (2010). https://doi.org/10.1016/j.jsv.2010.01.028

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sinan Basaran.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basaran, S., Bolat, F.C. Effect of lamination angle on control performance for composite beams subject to galloping-based flow-induced vibration. Eur. Phys. J. Plus 137, 911 (2022). https://doi.org/10.1140/epjp/s13360-022-03135-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03135-2

Navigation