Skip to main content
Log in

BiScO3-BiFeO3-PbTiO3-BaTiO3 high-temperature piezoelectric ceramic and its application on high-temperature acoustic emission sensor

BiScO3-BiFeO3-PbTiO3-BaTiO3高温压电陶瓷及其在高温声发射传感器中的应用

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Piezoelectric ceramic based high-temperature acoustic emission (AE) sensor is required urgently in the structural health monitoring of high-temperature fields. In this research, a series of 0.45(BiScxO3-BiFe1−xO3)-0.48PbTiO3-0.07BaTiO3 (BScxFe1−x-PT-BT, n(Sc)/n(Fe) =0.4/0.6 − 0.6/0.4) ceramics with both high Curie temperature and large piezoelectric constant were presented. The structure and electrical properties of BScxFe1−x-PT-BT ceramics as a function of n(Sc)/n(Fe) have been systematically investigated. All the ceramics possess a perovskite structure, and the phase approaches from the rhombohedral toward the tetragonal phase with the decrease of n(Sc)/n(Fe). The BSc0.5Fe0.5-PT-BT and BSc0.55Fe0.45-PT-BT piezoelectric ceramics exhibit good piezoelectricity (d33=250−281 pC/N), high Curie temperature (TC=430−450 °C) and excellent temperature stability. These improvements are greatly attributed to the balance between rhombohedral and tetragonal phase near morphotropic phase boundary with dense microstructure of ceramics. AE sensor based BSc0.5Fe0.5-PT-BT piezoelectric ceramic was designed, prepared and tested. The high-temperature stability of AE sensor was characterized through pencil-lead breaking with in situ high-temperature test. The noise of AE sensor is less than 40 dB, and the acoustic signal is up to 90 dB at 200 °C. As a result, AE sensors based on BScxFe1−x-PT-BT piezoelectric ceramics are expected to be applied into the structural health monitoring of high temperature fields.

摘要

针对声发射传感器在高温结构健康监测领域愈发迫切的需求, 本项目旨在制备适用于高温领域的压电陶瓷及其声发射传感器。首先, 通过固相反应制备了一系列的0.45(BiScxO3-BiFe1xO3)-0.48PbTiO3-0.07BaTiO3(BScxFex-PT-BT, n(Sc)/n(Fe)=0.4/0.6∼0.6/0.4)压电陶瓷, 系统地研究了BScxFex-PT-BT 陶瓷的微观结构和电学性能对n(Sc)/n(Fe)比例的依赖关系。所有陶瓷均呈现出典型的钙钛矿结构, 且随着n(Sc)/n(Fe)的降低, 晶相逐渐由菱方相向四方相转变。陶瓷的压电性能和介电性能随着n(Sc)/n(Fe)比例的降低先升高后降低。其中, BSc0.5Fe0.5-PT-BT 和BSc0.55Fe0.45-PT-BT 陶瓷展现了优异的压电性(d33=250∼281 pC/N)、高的居里温度(TC =430∼450 ℃)以及良好的温度稳定性。这些增强的性能是源于陶瓷准同型相界处菱方相和四方相之间的平衡以及致密的陶瓷微观结构。另外, 基于BSc0.5Fe0.5-PT-BT 压电陶瓷设计、制备了声发射传感器, 并对其进行了原位高温断铅测试。在200 ℃高温下, 声发射传感器的噪声低于40 dB, 声发射信号高于90 dB。因此, BScxFex-PT-BT 压电陶瓷基声发射传感器有望被应用于高温结构健康监测中。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. DU Yun-lou, FENG Guo-rui, KANG Hong-pu, ZHANG Yu-jiang, ZHANG Xi-hong. Effects of different pull-out loading rates on mechanical behaviors and acoustic emission responses of fully grouted bolts [J]. Journal of Central South University, 2021, 28(7): 2052–2066. DOI: https://doi.org/10.1007/s11771-021-4752-4.

    Article  Google Scholar 

  2. SU Guo-shao, GAN Wei, ZHAI Shao-bin, ZHAO Guo-fu. Acoustic emission precursors of static and dynamic instability for coarse-grained hard rock [J]. Journal of Central South University, 2020, 27(10): 2883–2898. DOI: https://doi.org/10.1007/s11771-020-4516-6.

    Article  Google Scholar 

  3. SHROUT T, EITEL R, RANDALL C. Piezoelectric materials in devices [M]. EPFL Swiss Federal Institute Technology, 2002: 413.

  4. KENJI U. Ferroelectric devices [M]. New York: Taylor & Francis Group CRC Press, 2010: 171.

    Google Scholar 

  5. EITEL R E, RANDALL C A, SHROUT T R, PARK S E. Preparation and characterization of high temperature perovskite ferroelectrics in the solid-solution (1-x)BiScO3-xPbTiO3 [J]. Japanese Journal of Applied Physics, 2002, 41: 2099. DOI: https://doi.org/10.1143/JJAP.41.2099.

    Article  Google Scholar 

  6. CHENG J R, ZHU Wen-yi, LI Nan, CROSS L E. Fabrication and characterization of xBiGaO3-(1-x)PbTiO3: A high temperature reduced Pb-content piezoelectric ceramic [J]. Materials Letters, 2003, 57: 2090–2094. DOI: https://doi.org/10.1016/S0167-577X(02)01143-6.

    Article  Google Scholar 

  7. DUAN R, SPEYER R F, ALBERTA E, SHROUT T R. High Curie temperature perovskite BiInO3-PbTiO3 ceramics [J]. Journal of Materials Research, 2004, 19: 2185–2193. DOI: https://doi.org/10.1557/JMR.2004.0282.

    Article  Google Scholar 

  8. COMYN T P, MCBRIDE S P, BELL A J. Processing and electrical properties of BiFeO3-PbTiO3 ceramics [J]. Materials Letters, 2004, 58: 3844–3846. DOI: https://doi.org/10.1016/j.matlet.2004.07.021.

    Article  Google Scholar 

  9. RANJAN R, KALYANI A K, GARG R, KRISHNA P S R. Structure and phase transition of the (1-x)PbTiO3-(x)BiAlO3 system [J]. Solid State Communication, 2009, 149: 2098–2101. DOI: https://doi.org/10.1016/j.ssc.2009.08.013.

    Article  Google Scholar 

  10. AMORÍN H, JIMÉNEZ R, VILA E, DOLLÉB M, CASTRO A, ALGUERÓ M. Electrical properties of ferroelectric BiMnO3-PbTiO3 under tailored synthesis and ceramic processing [J]. Phase Transitions, 2013, 86(7): 681–694. DOI: https://doi.org/10.1080/01411594.2012.730616.

    Article  Google Scholar 

  11. SUCHOMEL M R, DAVIES P K. Enhanced tetragonality in (x)PbTiO3-(1-x)Bi(Zn1/2Ti1/2)O3 and related solid solution systems[J]. Applied Physics Letters, 2005, 86: 262905. DOI: https://doi.org/10.1063/1.1978980.

    Article  Google Scholar 

  12. RAI R, KHOLKIN A L, SHARMA S. Multiferroic properties of BiFeO3 doped Bi(MgTi)O3-PbTiO3 ceramic system [J]. Journal of Alloys and Compounds, 2010, 506: 815–819. DOI: https://doi.org/10.1016/j.jallcom.2010.07.080.

    Article  Google Scholar 

  13. LEIST T, CHEN J, JO W, SUFFNER J, RÖDEL J. Temperature dependence of the piezoelectric coefficient in BiMeO3-PbTiO3 (Me=Fe, Sc, (Mg1/2Til/2)) ceramics [J]. Journal of the American Ceramic Society, 2011, 95(2): 711–715. DOI: https://doi.org/10.1111/j.1551-2916.2011.04848.x.

    Article  Google Scholar 

  14. XIE Zhen-kun, YUE Zhen-xing, RUEHL G, PENG Bin, ZHANG Jie, YU Qi, ZHANG Xiao-hua, LI Long-tu. Bi (Ni1/2Zr1/2)O3-PbTiO3 relaxor-ferroelectric films for piezoelectric energy harvesting and electrostatic storage [J]. Applied Physics Letters, 2014, 104: 243902. DOI: https://doi.org/10.1063/1.4884427.

    Article  Google Scholar 

  15. EITEL R E, RANDALL C A, SHROUT T R, REHRIG P W, HACKENBERGER W, PARK S E. New high temperature morphotropic phase boundary piezoelectrics based on Bi(Me) O3-PbTiO3 ceramics [J]. Japanese Journal of Applied Physics, 2001, 40: 5999. DOI: https://doi.org/10.1143/JJAP.40.5999.

    Article  Google Scholar 

  16. DONG Y Z, ZHOU Z Y, LIANG R H, DONG X L. Correlation between the grain size and phase structure, electrical properties in BiScO3-PbTiO3-based piezoelectric ceramics [J]. Journal of the American Ceramic Society, 2020, 103(9): 4785–4793. DOI: https://doi.org/10.1111/jace.17174.

    Article  Google Scholar 

  17. YU Y, YANG J K, WU J G, GAO X Y, BIAN L, LI X T, XIN X D, YU Z H, CHEN W P, DONG S X. Ultralow dielectric loss of BiScO3-PbTiO3 ceramics by Bi(Mn1/2Zr1/2)O3 modification [J]. Journal of the European Ceramic Society, 2020, 40: 3003–3010. DOI: https://doi.org/10.1016/j.jeurceramsoc.2020.02.015.

    Article  Google Scholar 

  18. ANJUM G, KUMAR R, MOLLAH S, SHUKLA D K, KUMAR S, LEE C G. Structural, dielectric, and magnetic properties of La0.8Bi0.2Fe1−xMnxO3 (0.0⩽x⩽0.4) multiferroics [J]. Journal of Applied Physics, 2010, 107: 103916. DOI: https://doi.org/10.1063/1.3386527.

    Article  Google Scholar 

  19. JIANG Qing-hui, NAN Ce-wen, SHEN Zhi-jian. Synthesis and properties of multiferroic La-modified BiFeO3 ceramics [J]. Journal of the American Ceramic Society, 2006, 89: 2123–2127. DOI: https://doi.org/10.1111/j.1551-2916.2006.01062.x.

    Article  Google Scholar 

  20. KUMAR M, YADAV K L. Study of room temperature magnetoelectric coupling in Ti substituted bismuth ferrite system [J]. Journal of Applied Physics, 2006, 100: 074111. DOI: https://doi.org/10.1063/1.2349491.

    Article  Google Scholar 

  21. ZHENG Ting, WU Jia-gang. Effects of site engineering and doped element types on piezoelectric and dielectric properties of bismuth ferrite lead-free ceramics [J]. Journal of Materials Chemistry C, 2015, 3(43): 11326–11334. DOI: https://doi.org/10.1039/C5TC02203G.

    Article  Google Scholar 

  22. LEE M H, KIM D J, CHOI H I, KIM M H, SONG T K, KIM W J, DO D. Thermal quenching effects on the ferroelectric and piezoelectric properties of BiFeO3-BaTiO3 ceramics [J]. ACS Applied Electronic Materials, 2019, 1: 1772–1780. DOI: https://doi.org/10.1021/acsaelm.9b00315.

    Article  Google Scholar 

  23. KIM D J, LEE M H, SONG T K. Comparison of multi-valent manganese oxides (Mn41, Mn31, and Mn21) doping in BiFeO3-BaTiO3 piezoelectric ceramics [J]. Journal of the European Ceramic Society, 2019, 39: 4697–4704. DOI: https://doi.org/10.1016/j.jeurceramsoc.2019.07.013.

    Article  Google Scholar 

  24. TONG Kai, ZHOU Chang-rong, LI Qing-ning, WANG Jun, YANG Ling, XU Ji-wen, CHEN Guo-hua, YUAN Chang-lai, RAO Guang-hui. Enhanced piezoelectric response and high-temperature sensitivity by site selected doping of BiFeO3-BaTiO3 ceramics [J]. Journal of the European Ceramic Society, 2018, 38: 1356–1366. DOI: https://doi.org/10.1016/j.jeurceramsoc.2017.10.023.

    Article  Google Scholar 

  25. CHEN J G, CHENG J R, GUO J, CHENG Z X, WANG J L, LIU H B, ZHANG S J. Excellent thermal stability and aging behaviors in BiFeO3 — BaTiO3 piezoelectric ceramics with rhombohedral phase [J]. Journal of the American Ceramic Society, 2020, 103: 374–381. DOI: https://doi.org/10.1111/jace.16755.

    Article  Google Scholar 

  26. HABIB M, LEE M H, KIM D J, AKRAM F, CHOI H I, KIM M H, KIM W J, SONG T K. Phase diagram for Bi-site Ladoped BiFeO3-BaTiO3 lead-free piezoelectric ceramics [J]. Journal of Materiomics, 2021, 7: 40–50. DOI: https://doi.org/10.1016/j.jmat.2020.07.001.

    Article  Google Scholar 

  27. ZHENG Ting, JIANG Zheng-gen, WU Jia-gang. Enhanced piezoelectricity in (1-x)Bi1.05Fe1-yAyO3-xBaTiO3 lead-free ceramics: Site engineering and wide phase boundary region [J]. Dalton Transactions, 2016, 45: 11277–11285. DOI: https://doi.org/10.1039/C6DT01805J

    Article  Google Scholar 

  28. ISUPOV V. Dielectric polarization of PbTiO3-PbZrO3 solid solutions [J]. Soviet Physics Solid State, USSR, 1970, 12(5): 1084.

    Google Scholar 

  29. ZHANG Shu-jun, YU Fa-peng. Piezoelectric materials for high temperature sensors [J]. Journal of the American Ceramic Society, 2011, 94(10): 3153–3170. DOI: https://doi.org/10.1111/j.1551-2916.2011.04792.xCitations:440.

    Article  Google Scholar 

  30. LEE H S, KIMURA T. Effects of microstructure on the dielectric and piezoelectric properties of lead metaniobate [J]. Journal of the American Ceramic Society, 1998, 81(12): 3228–3236. DOI: https://doi.org/10.1111/j.1151-2916.1998.tb02760.x.

    Article  Google Scholar 

  31. LI Yue-ming, CHENG Liang, GU Xing-yong, ZHANG Yu-ping, LIAO Run-hua. Piezoelectric and dielectric properties of PbNb2O6-based piezoelectric ceramics with high Curie temperature [J]. Journal of Materials Processing Technology, 2008, 197: 170–173. DOI: https://doi.org/10.1016/j.jmatprotec.2007.06.007.

    Article  Google Scholar 

  32. WANG Chun-ming, WANG Jin-feng. Aurivillius phase potassium bismuth titanate: K0.5Bi4.5Ti4O15 [J]. Journal of the American Ceramic Society, 2008, 91(3): 918–923. DOI: https://doi.org/10.1111/j.1551-2916.2007.02211.x.

    Article  Google Scholar 

  33. AMORÍN H, CORREAS C, FERNÁNDEZ-POSADA C M, PEÑA O, CASTRO A, ALGUERÓ M. Multiferroism and enhancement of material properties across the morphotropic phase boundary of BiFeO3-PbTiO3 [J]. Journal of Applied Physics, 2014, 115: 104104. DOI: https://doi.org/10.1063/1.4868319.

    Article  Google Scholar 

  34. SONG T H, EITEL R E, SHROUT T R, RANDALL C A. Dielectric and piezoelectric properties in the BiScO3-PbTiO3-PM·SnO2 ternary system [J]. Japanese Journal of Applied Physics, 2004, 43: 5392. DOI: https://doi.org/10.1143/jjap.43.5392.

    Article  Google Scholar 

  35. LIN Qi-wei, HE Chao, LONG Xi-fa. Structural, electric and magnetic properties of BiFeO3-Pb (Mg1/3Nb2/3)O3-PbTiO3 ternary ceramics [J]. Journal of Electroceramics, 2016, 36: 8–15. DOI: https://doi.org/10.1007/s10832-015-0009-7.

    Article  Google Scholar 

  36. FAN Long-long, CHEN Jun, LI Sha, KANG Hua-jun, LIU Lai-jun, FANG Liang, XING Xian-ran. Enhanced piezoelectric and ferroelectric properties in the BaZrO3 substituted BiFeO3-PbTiO3 [J]. Applied Physics Letters, 2013, 102: 022905. DOI: https://doi.org/10.1063/1.4775763.

    Article  Google Scholar 

  37. NING Zhen-hai, JIANG Ying, JIAN Jie, GUO Jian, CHENG Jin-rong, CHENG Hong-wei, CHEN Jian-guo. Achieving both large piezoelectric constant and high Curie temperature in BiFeO3-PbTiO3-BaTiO3 solid solution [J]. Journal of the European Ceramic Society, 2020, 40: 2338–2344. DOI: https://doi.org/10.1016/j.jeurceramsoc.2020.01.059.

    Article  Google Scholar 

  38. JIA Hong, HU Xiao-ke, CHEN Jian-guo. Temperature-dependent piezoelectric strain and resonance performance of Fe2O3-modified BiScO3-PbTiO3-Pb(Nb1/3Mn2/3)O3 ceramics [J]. Journal of the European Ceramic Society, 2019, 39(7): 2348–2353. DOI: https://doi.org/10.1016/j.jeurceramsoc.2019.02.013.

    Article  Google Scholar 

  39. CHEN Jian-guo, DONG Ying-jie, CHENG Jin-rong. Reduced dielectric loss and strain hysteresis in (0.97-x)BiScO3-xPbTiO3-0.03Pb(Mn1/3Nb2/3)O3 piezoelectric ceramics [J]. Ceramics International, 2015, 41: 9828–9833. DOI: https://doi.org/10.1016/j.ceramint.2015.04.056.

    Article  Google Scholar 

  40. GAO Biao, YAO Zhong-hua, LAI Dong-yu, GUO Qing-hu, PAN Wen-gao, HAO Hua, CAO Ming-he, LIU Han-xing. Unexpectedly high piezoelectric response in Sm-doped PZT ceramics beyond the morphotropic phase boundary region [J]. Journal of Alloys and Compounds, 2020, 836: 155474. DOI: https://doi.org/10.1016/j.jallcom.2020.155474.

    Article  Google Scholar 

Download references

Funding

Project(SDBX2020010) supported by Shandong Postdoctoral Innovative Talents Support Plan, China; Projects (U1806221, U2006218) supported by the National Natural Science Foundation of China; Project(ZR2020KA003) supported by Shandong Provincial Natural Science Foundation, China; Projects(2019GXRC017, 2020GXRC051) supported by the Project of “20 Items of University” of Jinan, China

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi-feng Huang  (黄世峰).

Additional information

Contributors

HUANG Shi-feng provided the concept and edited the draft of manuscript. FENG Chao conducted the literature review and wrote the first draft of the manuscript. FENG Yun-yun, FAN Mengjia, and GENG Chao-hui analyzed the measured data, LIN Xiu-juan and YANG Chang-hong edited the draft of manuscript. All authors replied to reviewers’ comments and revised the final version.

Conflict of interest

FENG Chao, FENG Yun-yun, FAN Meng-jia, GENG Chao-hui, LIN Xiu-juan, YANG Chang-hong, HUANG Shi-feng declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, C., Feng, Yy., Fan, Mj. et al. BiScO3-BiFeO3-PbTiO3-BaTiO3 high-temperature piezoelectric ceramic and its application on high-temperature acoustic emission sensor. J. Cent. South Univ. 28, 3747–3756 (2021). https://doi.org/10.1007/s11771-021-4853-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-021-4853-0

Key words

关键词

Navigation