Skip to main content
Log in

GO-induced effective interconnection layer for all solution-processed tandem quantum dot light-emitting diodes

基于PEDOT:PSS-GO/ZnMgO掺杂连接层的溶液加工串联量子点发光二极管

  • Published:
Journal of Central South University Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Compared to conventional quantum dot light-emitting diodes, tandem quantum dot light-emitting diodes (TQLEDs) possess higher device efficiency and more applications in the field of flat panel display and solid-state lighting in the future. The TQLED is a multilayer structure device which connects two or more light-emitting units by using an interconnection layer (ICL), which plays an extremely important role in the TQLED. Therefore, realizing an effective ICL is the key to obtain high-efficiency TQLEDs. In this work, the p-type materials polys (3, 4-ethylenedioxythiophene), poly (styrenesulfonate) (PEDOT: PSS) and the n-type material zinc magnesium oxide (ZnMgO), were used, and an effective hybrid ICL, the PEDOT: PSS-GO/ZnMgO, was obtained by doping graphene oxide (GO) into PEDOT:PSS. The effect of GO additive on the ICL was systematically investigated. It exhibits that the GO additive brought the fine charge carrier generation and injection capacity simultaneously. Thus, the all solution-processed red TQLEDs were prepared and characterized for the first time. The maximum luminance of 40877 cd/m2 and the highest current efficiency of 19.6 cd/A were achieved, respectively, showing a 21% growth and a 51% increase when compared with those of the reference device without GO. The encouraging results suggest that our investigation paves the way for efficient all solution-processed TQLEDs.

摘要

串联量子点发光二极管(TQLEDs)相较于传统QLEDs而言, 在相同的发光亮度下具有更高的器 件效率, 因而, 在未来显示和照明领域中具有极高的应用价值。TQLEDs是利用连接层(ICL)将两个或 多个发光单元连接起来的多层结构器件, 其中的连接层起着极为重要的作用。因此, 实现有效的连接 层是获得高效率TQLEDs的关键。为获得高效率溶液加工TQLEDs, 本文采用可溶液加工的P 型材料 聚(3, 4-亚乙基二氧噻吩):聚苯乙烯磺酸盐(PEDOT:PSS)和n 型材料氧化锌镁(ZnMgO), 并在 PEDOT:PSS 中掺杂无机氧化物-氧化石墨烯(GO) (体积比为5:1), 形成PEDOT:PSS-GO/ZnMgO 掺 杂ICL 以增强其在下层有机薄膜上的浸润性, 增加了连接层的有效沉积, 提高了连接层的载流子注入 和产生。利用该ICL 制备了溶液加工倒置红光TQLEDs: ITO/ZnO/QDs/PVK/PEDOT: PSS-GO/ZnMgO/QDs/PVK/PEDOT:PSS/Al, 其最大发光强度为40877 cd/m2, 最大电流效率高达19.6 cd/A, 相 比于未掺杂GO的参考器件(最大亮度为33868 cd/m2, 最大电流效率为13 cd/A), 其发光强度增加了 21%, 最大电流效率增加了51%。结果表明, 无机氧化物掺杂是一种可实现有效ICL 的简单且有效的 方法, 能有效提升溶液加工TQLEDs的性能, 进而推动QLEDs的实际生产应用。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. JI Wen-yu, SHEN Huai-bin, ZHANG Han, KANG Zhi-hui, ZHANG Han-zhuang. Over 800% efficiency enhancement of all-inorganic quantum-dot light emitting diodes with an ultrathinalumina passivating layer [J]. Nanoscale, 2018, 10: 11103–11109. DOI: https://doi.org/10.1039/C8NR01460D.

    Article  Google Scholar 

  2. CHEN Li-xiang, LEE M H, WANG Yi-wen, SYED A A, ZHU Fu-rong. Interface dipole for remarkable efficiency enhancement in all-solution-processable transparent inverted quantum dot light-emitting diodes [J]. Journal of Materials Chemistry C, 2018, 6: 2596. DOI: https://doi.org/10.1039/C8TC00303C.

    Article  Google Scholar 

  3. DAI Xing-liang, ZHANG Zhen-xing, JIN Yi-zheng, NIU Yuan, CAO Xiao-yong, CHEN Li-wei, WANG Jian-pu, PENG Xiao-gang. Solution-processed, high-performance light-emitting diodes based on quantum dots [J]. Nature, 2014, 515: 96–99. DOI: https://doi.org/10.1038/nature13829.

    Article  Google Scholar 

  4. MASHFORD B S, STEVENSON M, POPVIC Z, HAMILTON C, ZHOU Zhao-qun, BREEN C, STECKEL J, BULOVIC V, BAWENDI M, COE-SULLIVAN S, KAZLAS T P. High-efficiency quantum-dot light-emitting devices with enhanced charge injection [J]. Nature Photonics, 2013, 7: 407–412. DOI: https://doi.org/10.1038/nphoton.2013.70.

    Article  Google Scholar 

  5. BAE W K, LIM J, LEE D, PARK M J, LEE H, KWAK J, CHAR K, LEE C, LEE S. R/G/B/Natural white light thin colloidal quantum dot-based light-emitting devices [J]. Advanced Materials, 2014, 26(37): 6387–6393. DOI: https://doi.org/10.1002/adma.201400139.

    Article  Google Scholar 

  6. YANG Yi-xing, ZHENG Ying, CAO W, TITOV A, HYVONEN J, MANDERS R J, XUE Jian-geng, HOLLOWAY H P, QIAN Lei. High-efficiency light-emitting devices based on quantum dots with tailored nanostructures [J]. Nature Photonics, 2015, 9: 259–266. DOI: https://doi.org/10.1038/NPHOTON.2015.36.

    Article  Google Scholar 

  7. RAMASAMY P, KIM N, KANG Y S, RAMIRES O, LEE J S. Tunable, bright, and narrow-band luminescence from colloidal indium phosphide quantum dots [J]. Chem Mater, 2017, 29(16): 6893–6899. DOI: https://doi.org/10.1021/acs.chemmater.7b02204.

    Article  Google Scholar 

  8. WANG Fu-zhi, SUN Wen-da, LIU Pai, WANG Zhi-bin, ZHANG Jin, WEI Jiang-liu, LI Yang, HAYAT T, ALSAEDI A, TAN Zhao-ao. Achieving balanced charge injection of blue quantum dot light-emitting diodes through transport layer doping strategies [J]. Journal of Physical Chemistry Letters, 2019, 10(5): 960–965. DOI: https://doi.org/10.1021/acs.jpclett.9b00189.

    Article  Google Scholar 

  9. ZHAO Yong-shuang, CHEN Li-xiang, WU Jia-lin, TAN Xing-wen, XIONG Zhu-hong, LEI Yan-lian. Composite hole transport layer consisting of high-mobility polymer and small molecule with deep-lying HOMO level for efficient quantum dot light-emitting diodes [J]. IEEE Electron Device Letters, 2020, 41(1): 80–83. DOI: https://doi.org/10.1109/LED.2019.2953088.

    Article  Google Scholar 

  10. LIU Yu, JIANG Cong-biao, WANG Juan-hong, MU Lan, HE Zhi-wei, ZHONG Zhen-ji, CUN Yang-ke, MAI Chao-huang, WANG Jian, PENG Jun-biao, CAO Yong. Highly efficient all-solution processed inverted quantum dots based light-emitting diodes [J]. ACS Nano, 2018, 12(2): 1564–1570. DOI: https://doi.org/10.1021/acsnano.7b08129.

    Article  Google Scholar 

  11. JI Wen-yu, LV Ying, JING Peng-tao, ZHANG Han, WANG Jia, ZHANG Han-zhuang, ZHAO Jia-long. Highly efficient and low turn-on voltage quantum dot light-emitting diodes by using a stepwise hole-transport layer [J]. ACS Appled Materials & Interfaces, 2015, 7: 15955–15960. DOI: https://doi.org/10.1021/acsami.5b04050.

    Article  Google Scholar 

  12. ZHANG Heng, SUN Xiao-wei, CHEN Shu-ming. Over 100 cd-A−1 efficient quantum dot light-emitting diodes with inverted tandem structure [J]. Advnceo Functonal Materials, 2017, 27: 1700610. DOI: https://doi.org/10.1002/adfm.201700610.

    Article  Google Scholar 

  13. JIANG Cong-biao, ZOU Jian-hua, LIU Yu, SONG Chen, HE Zhi-wei, ZHONG Zhen-ji, WANG Jian, YIP H L, PENG Jun-biao, CAO Yong. Fully solution-processed tandem white quantum-dot light-emitting diode with an external quantum efficiency exceeding 25% [J]. ACS Nano, 2018, 12(6): 6040–6049. DOI: https://doi.org/10.1021/acsnano.8b02289.

    Article  Google Scholar 

  14. ZHENG Heng, FENG Yuan-xiang, CHEN Shu-ming. Improved efficiency and enhanced color quality of light-emitting diodes with quantum dot and organic hybrid tandem structure [J]. ACS Appled Materials & Interfaces, 2016, 8(40): 26982–26988. DOI: https://doi.org/10.1021/acsami.6b07303.

    Article  Google Scholar 

  15. ZHANG Heng, CHEN Shu-ming, SUN Xiao-wei. Efficient red/green/blue tandem quantum-dot light-emitting diodes with external quantum efficiency exceeding 21% [J]. ACS Nano, 2018, 12(1): 697–704. DOI: https://doi.org/10.1021/acsnano.7b07867.

    Article  Google Scholar 

  16. SHEN Huai-bin, GAO Qiang, ZHANG Yan-bin, LIN Yue, LIN Qing-li, LI Zhao-han, CHEN Ling, ZENG Zai-ping, LI Xiao-guang, JIA Yu, WANG Shu-jie, DU Zu-liang, LI Lin-song, ZHANG Zheng-yu. Visible quantum dot light-emitting diodes with simultaneous high brightness and efficiency [J]. Nature Photonics, 2019, 13: 192–197. DOI: https://doi.org/10.1038/s41566-019-0364-z.

    Article  Google Scholar 

  17. CHIBA T, PU Y J, KIDO J. Solution-processed white phosphorescent tandem organic light-emitting devices [J]. Advanced Materials, 2015, 27(32): 4681–4687. DOI: https://doi.org/10.1002/adma.201501866.

    Article  Google Scholar 

  18. KIM J H, HAN C Y, LEE K H, AN K S, SONG W, KIM J, OH M S, DO Y R, YANG H. Performance improvement of quantum dot-light-emitting diodes enabled by an alloyed ZnMgO nanoparticle electron transport layer [J]. Chemistry of Materials, 2015, 27(1): 197–204. DOI: https://doi.org/10.1021/cm503756q.

    Article  Google Scholar 

  19. SCHNIEPP H C, LI J L, MCALLISTER M J, SAI H, HERRERA-ALONSO M, ADAMSON D H, PRUD’HOMME R, CAR R, SAVILLE D A, AKSAY L A. Functionalized single graphene sheets derived from splitting graphite oxide [J]. Journal of Physical Chemistry B, 2006, 110(17): 8535–8539. DOI: https://doi.org/10.1021/jp060936f.

    Article  Google Scholar 

  20. CHEN Shan, YU Xiao-wen, ZHANG Miao, CAO Jia-min, LI Ying-ru, DING Li-ming, SHI Ge. A graphene oxide/oxygen deficient molybdenum oxide nanosheet bilayer as a hole transport layer for efficient polymer solar cells [J]. Journal of Materials Chemistry A, 2015, 3: 18380–18383. DOI: https://doi.org/10.1039/c5ta04823k.

    Article  Google Scholar 

  21. BAE S, LEE J U, PARK H, JUN E H, JUN J W, JO W H. Enhanced performance of polymer solar cells with PSSA-g-PANI/Graphene oxide composite as hole transport layer [J]. Solar Energy Materials & Solar Cells, 2014, 130: 599–604. DOI: https://doi.org/10.1016/j.solmat.2014.08.006.

    Article  Google Scholar 

  22. GAO Yang, YIP H L, HAU S K, O’MALLEY K M. Anode modification of inverted polymer solar cells using graphene oxide [J]. Applied Physics Letters, 2010, 97(20): 203306. DOI: https://doi.org/10.1063/1.3507388.

    Article  Google Scholar 

  23. ZHOU Ying, LIANG Chun-yan, YU Jin-gang, JIANG Xin-yu. Adsorption properties of a novel 3D graphene/MgO composite for heavy metal ions [J]. Journal of Central South University, 2019, 26(4): 813–823. DOI: https://doi.org/10.1007/s11771-019-4051-5.

    Article  Google Scholar 

  24. YUAN Xu, YUE Wen-bo, ZHANG Jin. Electrochemically exfoliated graphene as high-performance catalyst support to promote electrocatalytic oxidation of methanol on Pt catalysts [J]. Journal of Central South University, 2020, 27(9): 2515–2529. DOI: https://doi.org/10.1007/s11771-020-4477-9.

    Article  Google Scholar 

  25. SONG D H, SONG S H, SHEN T Z, LEE J S, PARK W H, KING S S, SONG J K. Quantum dot light-emitting diodes using a graphene oxide/PEDOT:PSS bilayer as hole injection layer [J]. Rsc Advances, 2017, 7(69): 43396–43402. DOI: https://doi.org/10.1039/C7RA07948F.

    Article  Google Scholar 

  26. XIANG Quan-jun, YU jia-guo. JARONIEC M Graphene-based semiconductor photocatalysts [J]. Chemical Society Reviews, 2012, 41(2): 782–796. DOI: https://doi.org/10.1039/c1cs15172j.

    Article  Google Scholar 

  27. PARK Y, CHOI K S, KIM S Y. Graphene oxide/PEDOT:PSS and reduced graphene oxide/PEDOT: PSS hole extraction layers in organic photovoltaic cells [J]. Physica Status Solidi, 2012, 209(7): 1363–1368. DOI: https://doi.org/10.1002/pssa.201228040.

    Article  Google Scholar 

  28. WANG Yi-shan, WANG Hao-wei, XU Jun-feng, HE Bo, LI Wei-le, WANG Qi, YANG Sheng-yi, ZOU Bing-suo. PEDOT: PSS modification by blending graphene oxide to improve the efficiency of organic solar cells [J]. Polymer Composites, 2018, 39(9): 3066–3072. DOI: https://doi.org/10.1002/pc.24311.

    Article  Google Scholar 

  29. WU Xin-kai, LIAN Lu-poh, YANG Shuai, HE Gu-feng. Highly conductive PEDOT: PSS and graphene oxide hybrid film with the dipping treatment by hydroiodic acid for organic light emitting diodes [J]. Journal of Materials Chemistry C, 2016, 4(36): 8528–8534. DOI: https://doi.org/10.1039/c6tc02424f.

    Article  Google Scholar 

  30. CHEN Jing, PAN Jiang-yong, HUANG Qian-qian, XU Feng, NATHAN A. Graphene oxide/PEDOT: PSS as injection layer for quantum dot light emitting diode [J]. Physica Status Solidi (A) Applications and Materials, 2015, 212(12): 2856–2861. DOI: https://doi.org/10.1002/pssa.201532430.

    Article  Google Scholar 

  31. WU Jia-lin, CHEN Li-xiang, TAN Xing-wen, ZHANG Qiao-ming, LEI Yan-lian. Large performance enhancement in all-solution-processed, full-color, inverted quantum dot light-emitting diodes by using graphene oxide-doped hole injection layer [J]. The Journal of Physical Chemistry C, 2020, 124: 11617–11624. DOI: https://doi.org/10.1021/acs.jpcc.0c02277.

    Article  Google Scholar 

  32. LEI Yan-lian, ZHAO Yong-shuang, ZHANG Qiao-ming, XIONG Zu-hong, CHEN Li-xiang. Highly efficient and bright red quantum dot light-emitting diodes with balanced charge injection [J]. Organic Electronics, 2020, 81: 105683. DOI: https://doi.org/10.1016/j.orgel.2020.105683.

    Article  Google Scholar 

Download references

Funding

Project(11904298) supported by the National Natural Science Foundation of China; Project(cstc2020jcyj-msxmX0586) supported by Chongqing Natural Science Foundation, China; Project(S202010635001) supported by Chongqing Municipal Training Program of Innovation and Entrepreneurship for Undergraduates, China

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing-wen Tan  (谭兴文).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Hh., Su, H., Chen, Lx. et al. GO-induced effective interconnection layer for all solution-processed tandem quantum dot light-emitting diodes. J. Cent. South Univ. 28, 3737–3746 (2021). https://doi.org/10.1007/s11771-021-4850-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-021-4850-3

Key words

关键词

Navigation