Skip to main content
Log in

Influence of thermal ageing on oxidation performance and nanostructures of dry soot in diesel engine

热老化对柴油机干碳烟氧化性能和纳米结构的影响

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Diesel soot subjected to high exhaust temperature suffers from thermal ageing, which is difficult to be removed by regeneration process. Based on the thermogravimetric (TG) analysis and images by high resolution transmission electron microscope (HRTEM), effects of thermal ageing temperature, ageing time and oxygen concentration on oxidation characteristic of soot are investigated. The activation energy of soot increases with the increase of ageing temperature and oxygen concentration. The activation energy increases rapidly when the ageing time is less than 45 min, and then it keeps in a value of 157 kJ/mol when the ageing time is between 45 and 60 min. Compared to the soot without thermal ageing, the shape of ageing soot particles presents shorter diameter and more regular circle by observing soot nanostructure. With the increase of ageing temperature, ageing time and oxygen concentration, the more stable structure of “shell and core” is shown in the basic carbon. The soot has an increased fringe length, decreased tortuosity and separation distance after thermal ageing process, which leads to the deepening of the disorder degree of soot nanostructures and reduction of soot oxidation activity. Consequently, the thermal ageing process should be avoided in order to optimize the active regeneration strategy.

摘要

柴油机碳烟在高排气温度下会发生热老化,难以通过再生过程去除。 本文基于热重(TG)分析和高分辨透射电镜(HRTEM)成像,研究了老化温度、老化时间和氧浓度对碳烟氧化特性的影响。 碳烟的活化能随老化温度和氧浓度的增加而增加。 当老化时间少于45 min 时活化能迅速增加,老化时间处于45~60 min 时活化能稳定在157 kJ/mol 左右。 通过观察碳烟纳米结构可以发现:与未经过热老化的碳烟相比,老化后的碳烟颗粒直径更短,呈更规则的圆形。 随着老化温度、老化时间和氧浓度的增加,基本碳粒的“壳-核”结构更稳定。 经过热老化后,碳烟边缘长度增加,弯曲度和微晶层间距减小,碳烟纳米结构紊乱程度加深,碳烟的氧化活性降低。 因此,优化主动再生策略应避免热老化过程。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. CHU Hua-qiang, XIANG Long-kai, NIE Xiao-kang, YA Yu-chen, GU Ming-yan, E Jia-qiang. Laminar burning velocity and pollutant emissions of the gasoline components and its surrogate fuels: A review [J]. Fuel, 2020, 269: 117451. DOI: https://doi.org/10.1016/j.fuel.2020.117451.

    Article  Google Scholar 

  2. HAN Wei-wei, ZHOU Yong, ZHU Ting, CHU Hua-qiang. Combustion synthesis of defect-rich carbon nanotubes as anodes for sodium-ion batteries [J]. Applied Surface Science, 2020, 520: 146317. DOI: https://doi.org/10.1016/j.apsusc.2020.146317.

    Article  Google Scholar 

  3. LI Yuan-xu, NING Zhi, YAN Jun-hao, LEE T H, LEE C F. Experimental investigation on combustion and unregulated emission characteristics of butanol-isomer/gasoline blends [J]. Journal of Central South University, 2019, 26(8): 2244–2258. DOI: https://doi.org/10.1007/s11771-019-4170-z.

    Article  Google Scholar 

  4. ZHANG Gui-ju, E Jia-qiang, ZUO Qing-song, GONG Jin-ke, ZUO Wei, YUAN Wen-hua. Numerical simulation on trapping efficiency of steady filtration process in diesel particulate filter and its experimental verification [J]. Journal of Central South University, 2015, 22(11): 4456–4466. DOI: https://doi.org/10.1007/s11771-015-2993-9.

    Article  Google Scholar 

  5. ZHANG Qian, FANG Jia, MENG Zhong-wei, CHEN Chen, QIN Zi-han. Thermogravimetric analysis of soot combustion in the presence of ash and soluble organic fraction [J]. RSC Advances, 2020, 10(55): 33436–33443. DOI: https://doi.org/10.1039/d0ra06384c.

    Article  Google Scholar 

  6. MENG Zhong-wei, CHEN Chao, LI Jian-song, FANG Jia, TAN Jie, QIN Yuan, JIANG Yuan, QIN Zi-han, BAI Wei-lian, LIANG Kun. Particle emission characteristics of DPF regeneration from DPF regeneration bench and diesel engine bench measurements [J]. Fuel, 2020, 262: 116589. DOI: https://doi.org/10.1016/j.fuel.2019.116589.

    Article  Google Scholar 

  7. WANG Fei-fei, ZHANG En-shi, XU Xin-hua, WANG Jin-bo, MI Jian-chun. Particle deposition in ventilation duct with convex or concave wall cavity [J]. Journal of Central South University, 2018, 25(11): 2601–2614. DOI: https://doi.org/10.1007/s11771-018-3939-9.

    Article  Google Scholar 

  8. SHI Yun-xi, CAI Yi-xi, LI Xiao-hua, JI Liang, CHEN Yi, WANG Wei-kai. Evolution of diesel particulate physicochemical properties using nonthermal plasma [J]. Fuel, 2019, 253: 1292–1299. DOI: https://doi.org/10.1016/j.fuel.2019.05.10.

    Article  Google Scholar 

  9. FANG Jia, MENG Zhong-wei, LI Jian-song, DU Yu-heng, QIN Yuan, JIANG Yuan, BAI Wei-lian, CHASE G G. The effect of operating parameters on regeneration characteristics and particulate emission characteristics of diesel particulate filters [J]. Applied Thermal Engineering, 2019, 148: 860–867. DOI: https://doi.org/10.1016/j.applthermaleng.2018.11.066.

    Article  Google Scholar 

  10. DU Yu-heng, MENG Zhong-wei, FANG Jia, QIN Yuan, JIANG Yuan, LI Shuang, LI Jian-song, CHEN Chao, BAI Wei-lian. Characterization of soot deposition and oxidation process on catalytic diesel particulate filter with ash loading through an optimized visualized method [J]. Fuel, 2019, 243: 251–261. DOI: https://doi.org/10.1016/j.fuel.2019.01.103.

    Article  Google Scholar 

  11. BUONO D, SENATORE A, PRATI M V. Particulate filter behaviour of a diesel engine fueled with biodiesel [J]. Applied Thermal Engineering, 2012, 49: 147–153. DOI: https://doi.org/10.1016/j.applthermaleng.2011.08.019.

    Article  Google Scholar 

  12. SHI Yun-xi, CAI Yi-xi, FAN Run-lin, CUI Ying-xin, CHEN Yi, JI Liang. Characterization of soot inside a diesel particulate filter during a nonthermal plasma promoted regeneration step [J]. Applied Thermal Engineering, 2019, 150: 612–619. DOI: https://doi.org/10.1016/j.applthermaleng.2019.01.015.

    Article  Google Scholar 

  13. ROSSOMANDO B, ARSIE I, MELONI E, PALMA V, PIANESE C. Experimental testing of a low temperature regenerating catalytic DPF at the exhaust of a light-duty diesel engine [C]// WCX World Congress Experience, 2018-01-0351. DOI: https://doi.org/10.4271/2018-01-0351.

  14. MENG Zhong-wei, LI Jian-song, FANG Jia, TAN Jie, QIN Yuan, JIANG Yuan, QIN Zi-han, BAI Wei-lian, LIANG Kun. Experimental study on regeneration performance and particle emission characteristics of DPF with different inlet transition sections lengths [J]. Fuel, 2020, 262: 116487. DOI: https://doi.org/10.1016/j.fuel.2019.11648.

    Article  Google Scholar 

  15. FANG Jia, QIN Zi-han, MENG Zhong-wei, JIANG Yuan, LIU Jing, ZHANG Qian, TAN Jie. Performance of diesel soot oxidation in the presence of ash species [J]. Energy & Fuels, 2020, 34(2): 2185–2192. DOI: https://doi.org/10.1021/acs.energyfuels.9b03085.

    Article  Google Scholar 

  16. FANG Jia, MENG Zhong-wei, LI Jian, PU Yun-fei, DU Yu-heng, LI Jian-song, JIN Zhao-xiang, CHEN Chao, CHASE G G. The influence of ash on soot deposition and regeneration processes in diesel particular filter [J]. Applied Thermal Engineering, 2017, 124: 633–640. DOI: https://doi.org/10.1016/j.applthermaleng.2017.06.076.

    Article  Google Scholar 

  17. FANG Jia, ZHANG Qian, MENG Zhong-wei, LUO Yan, OU Juan, DU Yu-heng, ZHANG Zhi-lin. Effects of ash composition and ash stack heights on soot deposition and oxidation processes in catalytic diesel particulate filter [J]. Journal of the Energy Institute, 2020, 93: 1942–1950. DOI: https://doi.org/10.1016/j.joei.2020.04.009.

    Article  Google Scholar 

  18. LIU Jun-heng, WANG Le-jian, SUN Ping, WANG Pan, LI Yu-qiang, MA Hong-jie, WU Peng-cheng, LIU Zeng-guang. Effects of iron-based fuel borne catalyst addition on microstructure, element composition and oxidation activity of diesel exhaust particles [J]. Fuel, 2020, 270: 117597. DOI: https://doi.org/10.1016/j.fuel.2020.117597.

    Article  Google Scholar 

  19. E Jia-qiang, ZHAO Xiao-huan, XIE Long-fu, ZHANG Bin, CHEN Jing-wei, ZUO Qing-song, HAN Dan-dan, HU Wen-yu, ZHANG Zhi-qing. Performance enhancement of microwave assisted regeneration in a wall-flow diesel particulate filter based on field synergy theory [J]. Energy, 2019, 169: 719–729. DOI:https://doi.org/10.1016/j.energy.2018.12.086.

    Article  Google Scholar 

  20. PALMA V, MELONI E. Microwave assisted regeneration of a catalytic diesel soot trap [J]. Fuel, 2016, 181: 421–429. DOI: https://doi.org/10.1016/j.fuel.2016.05.016.

    Article  Google Scholar 

  21. FANG Jia, SHI Rong, MENG Zhong-wei, JIANG Yuan, QIN Zi-han, ZHANG Qian, QIN Yuan, TAN Jie, BAI Wei-lian. The interaction effect of catalyst and ash on diesel soot oxidation by thermogravimetric analysis [J]. Fuel, 2019, 258: 116151. DOI: https://doi.org/10.1016/j.fuel.2019.116151.

    Article  Google Scholar 

  22. LIATI A, EGGENSCHWILER P D, SCHREIBER D, ZELENAY V, AMMANN M. Variations in diesel soot reactivity along the exhaust after-treatment system, based on the morphology and nanostructure of primary soot particles [J]. Combustion and Flame, 2013, 160(3): 671–681. DOI: https://doi.org/10.1016/j.combustflame.2012.10.024.

    Article  Google Scholar 

  23. ROSSOMANDO B, ARSIE I, MELONI E, PALMA V, PIANESE C. Experimental test on the feasibility of passive regeneration in a catalytic dpf at the exhaust of a light-duty diesel engine [C]// 14th International Conference on Engines & Vehicles, 2019-24-0045. DOI: https://doi.org/10.4271/2019-24-0045.

  24. E Jia-qiang, ZUO Wei, GAO Jun-xu, PENG Qing-guo, ZHANG Zhi-qing, HIEU P M. Effect analysis on pressure drop of the continuous regeneration-diesel particulate filter based on NO2 assisted regeneration [J]. Applied Thermal Engineering, 2016, 100: 356–366. DOI: https://doi.org/10.1016/j.applthermaleng.2016.02.031.

    Article  Google Scholar 

  25. MELONI E, PALMA V, VAIANO V. Optimized microwave susceptible catalytic diesel soot trap [J]. Fuel, 2017, 205: 142–152. DOI: https://doi.org/10.1016/j.fuel.2017.05.074.

    Article  Google Scholar 

  26. GADDAM C K, WAL R V, CHEN Xu, YEZERETS A, KAMASAMUDRAM K. Reconciliation of carbon oxidation rates and activation energies based on changing nanostructure [J]. Carbon, 2016, 98: 545–556. DOI: https://doi.org/10.1016/j.carbon.2015.11.035.

    Article  Google Scholar 

  27. MENG Zhong-wei, YANG Dong, YAN Y. Study of carbon black oxidation behavior under different heating rates [J]. Journal of Thermal Analysis and Calorimetry, 2014, 118(1): 551–559. DOI: https://doi.org/10.1007/s10973-014-4020-z.

    Article  Google Scholar 

  28. DENG Yuan-wang, CUI Jin-hui, E Jia-qiang, ZHANG Bin, ZHAO Xiao-huan, ZHANG Zhi-qing, HAN Dan-dan. Investigations on the temperature distribution of the diesel particulate filter in the thermal regeneration process and its field synergy analysis [J]. Applied Thermal Engineering, 2017, 123: 92–102. DOI: https://doi.org/10.1016/j.applthermaleng.2017.05.072.

    Article  Google Scholar 

  29. BREDIN A, LARCHER A V, MULLINS B J. Thermogravimetric analysis of carbon black and engine soot—Towards a more robust oil analysis method [J]. Tribology International, 2011, 44(12): 1642–1650. DOI: https://doi.org/10.1016/j.triboint.2011.06.002.

    Article  Google Scholar 

  30. YEHLIU K, WAL R V, ARMAS O, BOEHMAN A L. Impact of fuel formulation on the nanostructure and reactivity of diesel soot [J]. Combustion and Flame, 2012, 159(12): 3597–3606. DOI: https://doi.org/10.1016/j.combustflame.2012.07.004.

    Article  Google Scholar 

  31. RAJ A, YANG S Y, CHA D, TAYOUO R, CHUNG S H. Structural effects on the oxidation of soot particles by O2: Experimental and theoretical study [J]. Combustion and Flame, 2013, 160(9): 1812–1826. DOI: https://doi.org/10.1016/j.combustflame.2013.03.010.

    Article  Google Scholar 

  32. JARAMILLO I C, GADDAM C K, WAL R V, HUANG C H, LEVINTHAL J D, LIGHTY J S. Soot oxidation kinetics under pressurized conditions [J]. Combustion and Flame, 2014, 161(11): 2951–2965. DOI: https://doi.org/10.1016/j.combustflame.2014.04.016.

    Article  Google Scholar 

  33. OSCHATZ M, PRÉ P, DÖRFLER S, NICKEL W, BEAUNIER P, ROUZAUD J-N, FISCHER C, BRUNNER E, KASKEL S. Nanostructure characterization of carbide-derived carbons by morphological analysis of transmission electron microscopy images combined with physisorption and Raman spectroscopy [J]. Carbon, 2016, 105: 314–322. DOI: https://doi.org/10.1016/j.carbon.2016.04.041.

    Article  Google Scholar 

  34. WANG Xue-bin, LI Shuai-shuai, ADEOSUN A, LI Y, VUJANOVIĆ M, TAN Hou-zhang, DUIĆ N. Effect of potassium-doping and oxygen concentration on soot oxidation in O2/CO2 atmosphere: A kinetics study by thermogravimetric analysis [J]. Energy Conversion and Management, 2017, 149: 686–697. DOI:https://doi.org/10.1016/j.enconman.2017.01.003.

    Article  Google Scholar 

  35. CHONG H S, AGGARWAL S K, LEE K O, YANG S Y, SEONG H. Experimental investigation on the oxidation characteristics of diesel particulates relevant to DPF regeneration [J]. Combustion Science and Technology, 2013, 185(1): 95–121. DOI: https://doi.org/10.1080/00102202.2012.709563.

    Article  Google Scholar 

  36. YEHLIU K, WAL R V, BOEHMAN A L. Development of an HRTEM image analysis method to quantify carbon nanostructure [J]. Combustion and Flame, 2011, 158(9): 1837–1851. DOI: https://doi.org/10.1016/j.combustflame.2011.01.009.

    Article  Google Scholar 

  37. YEHLIU K, WAL R V, BOEHMAN A L. A comparison of soot nanostructure obtained using two high resolution transmission electron microscopy image analysis algorithms [J]. Carbon, 2011, 49(13): 4256–4268. DOI: https://doi.org/10.1016/j.carbon.2011.06.003.

    Article  Google Scholar 

  38. WAL R V, TOMASEK A J, STREET K, HULL D R, THOMPSON W K. Carbon nanostructure examined by lattice fringe analysis of high-resolution transmission electron microscopy images [J]. Applied Spectroscopy, 2004, 58(2): 230–237. https://www.osapublishing.org/as/abstract.cfm?uri=as-58-2-230

    Article  Google Scholar 

  39. WAL R V, TOMASEK A J. Soot oxidation [J]. Combustion and Flame, 2003, 134(1, 2): 1–9. DOI: https://doi.org/10.1016/s0010-2180(03)00084-1.

    Google Scholar 

  40. WAL R V, YEZERETS A, CURRIER N W, KIM D H, WANG C M. HRTEM Study of diesel soot collected from diesel particulate filters [J]. Carbon, 2007, 45(1): 70–77. DOI: https://doi.org/10.1016/j.carbon.2006.08.005.

    Article  Google Scholar 

  41. WANG Chang-an, HUDDLE T, HUANG C H, ZHU W, WAL R V, LESTER E H, MATHEWS J P. Improved quantification of curvature in high-resolution transmission electron microscopy lattice fringe micrographs of soots [J]. Carbon, 2017, 117: 174–181. DOI: https://doi.org/10.1016/j.carbon.2017.02.059.

    Article  Google Scholar 

  42. CHENG H K F, CHONG M F, LIU E, ZHOU K, LI L. Thermal decomposition kinetics of multiwalled carbon nanotube/polypropylene nanocomposites [J]. Journal of Thermal Analysis and Calorimetry, 2014, 117(1): 63–71. DOI: https://doi.org/10.1007/s10973-014-3668-8.

    Article  Google Scholar 

  43. KHOLGHY M R, VESHKINI A, THOMSON M J. The core-shell internal nanostructure of soot-A criterion to model soot maturity [J]. Carbon, 2016, 100: 508–536. DOI: https://doi.org/10.1016/j.carbon.2016.01.022.

    Article  Google Scholar 

  44. TAN Pi-qiang, LI Yuan, SHEN Han-yan. Effect of lubricant sulfur on the morphology and elemental composition of diesel exhaust particles [J]. Jounal of Environmental Sciences, 2017, 55: 354–362. DOI: https://doi.org/10.1016/j.jes.2017.01.014.

    Article  Google Scholar 

  45. KAMEYA Y, HAYASHI T, MOTOSUKE M. Oxidation-resistant graphitic surface nanostructure of carbon black developed by ethanol thermal decomposition [J]. Diamond and Related Materials, 2016, 65: 26–31. DOI: https://doi.org/10.1016/j.diamond.2016.01.002.

    Article  Google Scholar 

Download references

Funding

Project(51676167) supported by the National Natural Science Foundation of China; Project(17TD0035) supported by the Sichuan Provincial Scientific Research Innovation Team Program, China; Projects(2017TD0026, 2015TD0021) supported by Science & Technology Department of Sichuan Province, China

Author information

Authors and Affiliations

Authors

Contributions

MENG Zhong-wei provided the idea of the study, and led the research activity planning and execution. LI Jian conducted all the experiments and drafted the manuscript. ZHANG Qian, HUANG Jun-feng, JIANG Yuan and QIN Yuan conducted the experiments, and analyzed the experimental data. CHASE G G revised the manuscript. FANG Jia revised the manuscript and was responsible for the submission and reply of the manuscript as the corresponding author. All the authors replied to reviewers’ comments and revised the final version.

Corresponding author

Correspondence to Jia Fang  (方嘉).

Additional information

Conflict of interest

MENG Zhong-wei, LI Jian, ZHANG Qian, HUANG Jun-feng, JIANG Yuan, QIN Yuan, G G CHASE, FANG Jia declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, Zw., Li, J., Zhang, Q. et al. Influence of thermal ageing on oxidation performance and nanostructures of dry soot in diesel engine. J. Cent. South Univ. 28, 2206–2220 (2021). https://doi.org/10.1007/s11771-021-4759-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-021-4759-x

Key words

关键词

Navigation