Skip to main content
Log in

Thermal decomposition kinetics of multiwalled carbon nanotube/polypropylene nanocomposites

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The multiwalled carbon nanotube (MWCNT)/polypropylene (PP) nanocomposites with different MWCNT contents were prepared by a melt-mixing method, and their thermal decomposition kinetics has been studied. As the properties of MWCNT/PP nanocomposites fundamentally depend on the dispersion state of MWCNTs in the PP matrix, rheological measurement and field emission electron microscopy were used to examine the dispersion state of MWCNTs in the PP matrix. The effect of MWCNTs on the thermal stability of PP in MWCNT/PP nanocomposites was studied at different heating rates by means of thermogravimetric (TG) analysis. Based on the TG results, the Ozawa’s method was used for the determination of the activation energies required in the thermal decomposition of MWCNT/PP nanocomposites. The Kissinger’s method was also applied to verify the results. Both methods proved that the thermal stability of PP could be significantly improved in the presence of MWCNTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chien JCW, Kian JKY. Polymer reaction. 9. Effect of Polymer-bound chromium on oxidative pyrolysis of poly(propylene). Macromolecules. 1980;13:280–8.

    Article  CAS  Google Scholar 

  2. Westerhout RWJ, Balk RHP, Meijer R, Kuipers JAM, van Swaaij WPM. Examination and evaluation of the use of screen heaters for the measurement of the high temperature pyrolysis kinetics of polyethene and polypropene. Ind Eng Chem Res. 1997;36:3360–8.

    Article  CAS  Google Scholar 

  3. Westerhout RWJ, Waanders J, Kuipers JAM, van Swaaij WPM. Kinetics of the low-temperature pyrolysis of polyethene, polypropene, and polystyrene modeling, experimental determination, and comparison with literature models and data. Ind Eng Chem Res. 1997;36:1955–64.

    Article  CAS  Google Scholar 

  4. Dickens B. Thermal decomposition study of isotactic polypropylene using factor-jump thermogravimetry. J Polym Sci. 1982;20:1169–83.

    CAS  Google Scholar 

  5. Rychly J, Matisova-Rychla L, Vavrekova M. Difference method of evaluation of dynamic integral thermogravimetric curves in decomposition of polypropylene. J Therm Anal. 1982;25:423–31.

    Article  CAS  Google Scholar 

  6. Day M, Cooney JD, MacKinnon M. Decomposition of contaminated plastics: a kinetic study. Polym Degrad Stab. 1995;48:341–9.

    Article  CAS  Google Scholar 

  7. Peterson JD, Vyazovkin S, Wight CA. Kinetics of the thermal and thermo-oxidative decomposition of polystyrene, polyethylene and poly(propylene). Macromol Chem Phys. 2001;202:775–84.

    Article  CAS  Google Scholar 

  8. Beyler CL, Hirschler MM. Thermal decomposition of polymers. In: DiNenno PJ, editor. SFPE handbook of fire protection engineering. Boston: National Fire Protection Association; 2002. p. 1–130.

  9. Ajayan PM, Stephan O, Colliex C, Trauth D. Aligned carbon nanotube arrays formed by cutting a polymer resin–nanotube composite. Science. 1994;265:1212–4.

    Article  CAS  Google Scholar 

  10. Sahoo NG, Thet NT, Tan QH, Li L, Chan SH, Zhao J, Yu S. Effect of carbon nanotubes and processing methods on the properties of carbon nanotube/polypropylene composites. J Nanosci Nanotechnol. 2009;9:5910–9.

    Article  CAS  Google Scholar 

  11. Pan Y, Cheng HKF, Li L, Chan SH, Zhao J, Juay YK. Annealing induced electrical conductivity jump of multi-walled carbon nanotube/polypropylene composites and influence of molecular weight of polypropylene. J Polym Sci. 2010;48:2238–47.

    Article  CAS  Google Scholar 

  12. Funck A, Kaminsky W. Polypropylene carbon nanotube composites by in situ polymerization. Compos Sci Technol. 2007;67:906–15.

    Article  CAS  Google Scholar 

  13. Pan Y, Li L, Chan SH, Zhao J. Correlation between dispersion state and electrical conductivity of MWCNTs/PP composites prepared by melt blending. Composites. 2010;41:419–26.

    Article  Google Scholar 

  14. Tjong SC, Ba SP. Mechanical behaviors of polypropylene/carbon nanotubenanocomposites: the effects of loading rate and temperature. Mater Sci Eng. 2008;485:508–16.

    Article  Google Scholar 

  15. Zhang N, Zhang Q, Wang K, Deng H, Fu Q. Combined effect of β-nucleating agent and multi-walled carbon nanotubes on polymorphic composition and morphology of isotatic polypropylene. J Therm Anal Calorim. 2012;107:733–43.

    Article  CAS  Google Scholar 

  16. Morosfoi BB, Szabo A, Marosi Gy, Tabuani D, Camino G, Pagliari S. Thermal and spectroscopic characterization of polypropylene–carbon nanotube composites. J Therm Anal Calorim. 2006;86:669–73.

    Article  Google Scholar 

  17. Cheng HKF, Sahoo NG, Lu X, Li L. Thermal kinetics of montmorillonite nanoclay/maleic anhydride-modified polypropylene nanocomposites. J Therm Anal Calorim. 2012;109:1117–27.

    Article  Google Scholar 

  18. Wang Y, Shen H, Li G, Mai K. Crystallization and melting behaviour of PP/CaCO3 nanocomposites during thermo-oxidative decomposition. J Therm Anal Calorim. 2010;100:999–1008.

    Article  CAS  Google Scholar 

  19. Ehrenstein GW, Riedel G, Trawiel P. Thermal analysis of plastics, theory and practices. Munich: Hanser Publishers; 2005.

    Google Scholar 

  20. Teng CC, Ma CM, Huang YW, Yuen SM, Weng CC, Chen CH, Su SF. Effect of MWCNT content on rheological and dynamic mechanical properties of multiwalled carbon nanotube/polypropylene composites. Composites. 2008;39:1869–75.

    Article  Google Scholar 

  21. Lee SH, Kim MW, Kim SH, Youn JR. Rheological and electrical properties of polypropylene/MWCNT composites prepared with MWCNT masterbatch chips. Eur Polym J. 2008;44:1620–30.

    Article  CAS  Google Scholar 

  22. Rahmatpour A, Aalaie J. Steady shear rheological behavior, mechanical properties, and morphology of the polypropylene/carbon nanotube nanocomposites. J Macromol Sci. 2008;47:929–41.

    Article  CAS  Google Scholar 

  23. Potschke P, Krause B, Stange J, Münstedt H. Elongational viscosity and foaming behavior of PP modified by electron irradiation or nanotube addition. Macromol Symp. 2007;254:400–8.

    Article  Google Scholar 

  24. Mutel AT, Kamal MR. Rheological properties of fiber-reinforced polymer melts. In: Utracki LA, editor. Two phase polymer systems. New York: Carl Hanser; 1991. p. 305–421.

    Google Scholar 

  25. Kitano T, Kataoka T, Nagatsuka Y. Shear flow rheological properties of vinylon- and glass-fiber reinforced polyethylene melts. Rheol Acta. 1984;23:20–30.

    Article  CAS  Google Scholar 

  26. Xu D, Wang Z. Role of multi-wall carbon nanotube network in composites to crystallization of isotactic polypropylene matrix. Polymer. 2008;49:330–8.

    Article  CAS  Google Scholar 

  27. Zhou Z, Wang S, Zhang Y, Zhang Y. Effect of different carbon fillers on the properties of PP composites: comparison of carbon black with multiwalled carbon nanotubes. J Appl Polym Sci. 2006;102:4823–30.

    Article  CAS  Google Scholar 

  28. Yang BX, Shi JH, Pramoda KP, Goh SH. Enhancement of the mechanical properties of polypropylene using polypropylene-grafted multiwalled carbon nanotubes. Comp Sci Technol. 2008;68:2490–7.

    Article  CAS  Google Scholar 

  29. Masuda J, Torkelson JM. Dispersion and major property enhancement in polymer/multiwall carbon nanotube nanocomposites via solid-state shear pulverization followed by melt mixing. Macromolecules. 2008;41:5974–7.

    Article  CAS  Google Scholar 

  30. Xia H, Wang Q, Li K, Hu GH. Preparation of polypropylene/carbon nanotube composite powder with a solid-state mechanochemical pulverization process. J Appl Polym Sci. 2004;93:378–86.

    Article  CAS  Google Scholar 

  31. Pielichowski J, Pielichowski K. Application of thermal analysis for the investigation of polymer degradation processes. J Therm Anal. 1995;43:505–8.

    Google Scholar 

  32. TA-023: Thermal applications notes. TA Instruments, thermal analysis and rheology; 1990. http://www.tainstruments.co.jp/application/pdf/Thermal_Library/Applications_Briefs/TA023.PDF. Accessed 4 Feb 2014.

  33. Bernhard W. Thermal analysis of polymeric materials. Berlin: Springer; 2005.

    Google Scholar 

  34. Bikiaris D. Microstructure and properties of polypropylene/carbon nanotube nanocomposites. Materials. 2010;3:2884–946.

    Article  CAS  Google Scholar 

  35. Che JW, Cagin T, Goddard WA. Thermal conductivity of carbon nanotubes. Nanotechnology. 2000;11:65–9.

    Article  CAS  Google Scholar 

  36. Cheng HKF, Sahoo NG, Pan Y, Li L, Chan SH, Zhao J, Chen G. Complementary effects of multi-walled carbon nanotubes and conductive carbon black on polyamide 6. J Polym Sci. 2010;48:1203–12.

    Article  CAS  Google Scholar 

  37. Sahoo NG, Cheng HKF, Cai J, Li L, Chan SH, Zhao J, Yu S. Improvement of mechanical and thermal properties of carbon nanotube composites through nanotube functionalization and processing methods. Mater Chem Phys. 2009;117:313–20.

    Article  CAS  Google Scholar 

  38. Sahoo NG, Cheng HKF, Li L, Chan SH, Judeh Z, Zhao J. Specific functionalization of carbon nanotubes for advanced polymer nanocomposites. Adv Funct Mater. 2009;19:3962–71.

    Article  CAS  Google Scholar 

  39. Sahoo NG, Cheng HKF, Pan Y, Li L, Chan SH, Zhao J. Strengthening of liquid crystalline polymer by functionalized carbon nanotubes through interfacial interaction and homogeneous dispersion. Polym Adv Technol. 2010;22:1452–8.

    Article  Google Scholar 

  40. Seo MK, Park SJ. A kinetic study on the thermal decomposition of multi-walled carbon nanotubes–reinforced poly(propylene) composites. Macromol Mater Eng. 2004;289:368–74.

    Article  CAS  Google Scholar 

  41. Pramoda KP, Chung TS, Lui SL, Oikawa H, Yamaguchi A. Characterization and thermal decomposition of polyimide and polyimide liquid crystalline polymers. Polym Degrad Stabil. 2000;67:365–74.

    Article  CAS  Google Scholar 

  42. Kissinger HE. Variation of peak temperature with heating rate in differential thermal analysis. J Res Natl Bur Stand. 1956;57:217–21.

    Article  CAS  Google Scholar 

  43. TA-125: Thermal applications notes. TA Instruments, thermal analysis and rheology; 1990. http://www.tainstruments.co.jp/application/pdf/Thermal_Library/Applications_Briefs/TA125.PDF. Accessed 4 Feb 2014.

  44. TA-075: Thermal applications notes. TA Instruments, thermal analysis and rheology; 1990. http://www.tainstruments.com/library_download.aspx?file=TA075.PDF. Accessed 4 Feb 2014.

  45. TA-090: Thermal applications notes. TA Instruments, thermal analysis and rheology; 1990. http://www.tainstruments.co.jp/application/pdf/Thermal_Library/Applications_Briefs/TA090.PDF. Accessed 4 Feb 2014.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, H.K.F., Chong, M.F., Liu, E. et al. Thermal decomposition kinetics of multiwalled carbon nanotube/polypropylene nanocomposites. J Therm Anal Calorim 117, 63–71 (2014). https://doi.org/10.1007/s10973-014-3668-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-3668-8

Keywords

Navigation