Skip to main content
Log in

Dynamic regimes of cemented backfill at early-age

早龄期胶结充填体的动态力学特性

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

In view of the mechanics characteristic of cemented tailings backfill (CTB) at early age, the separation Hopkinson pressure bar test device was used to explore the effects of curing age and impact energy. A total of 48 CTB samples with diameter of 50 mm and length of 25 mm were prepared with curing ages of 3, 5, 7 and 9 d. Impact tests under different impact energy (10, 20, 30 and 40 J) were carried out. The microstructure of CTB at different ages was analyzed by scanning electron microscopy (SEM). The results show that, the curing age mainly affects the mechanical properties and internal structure of early-age CTB. With increasing curing age, the mechanical properties of early-age CTB change from viscoelasticity to brittleness. The impact energy mainly affects the response of dynamic peak compressive strength to strain rate. Under low strain rate, the structure of CTB is broken, but still has bearing capacity, affecting the formation of later strength. It is concluded that the structural loses completely under the action of high strain rate. Therefore, the control of impact energy and the protection of curing age should be fully considered in actual production process.

摘要

为了明确早龄期胶结充填体的动态力学特性,采用分离式Hopkinson 压杆(SHPB)试验装置探索了养护龄期和冲击能对充填体动态力学性能的影响。将制备好的直径为 50 mm、长度25 mm 的胶结充填体试样在标准养护条件下分别养护3、5、7 和9 d,然后开展不同冲击能量(10、20、30 和40 J)下的胶结充填体动力学试验,并结合扫描电镜(SEM)分析了不同龄期CTB 的微观结构。结果表明,养护龄期主要影响充填体的力学性能和内部结构,随着养护龄期的增加,早龄期充填体的变形特性由粘弹性向脆性转变;冲击能量主要影响充填体动态抗压强度对应变率响应的敏感性;早龄期充填体在低应变率作用下结构发生一定的破坏,影响后期强度,但仍具有一定的承载力,在高应变率作用下充填体结构完全破坏,丧失承载能力。因此,在实际生产过程中应充分考虑冲击能量的控制和养护龄期的保障。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. YIN Sheng-hua, SHAO Ya-jian, WU Ai-xiang, WANG Yi-ming, GAO Zhi-yong. Texture features analysis on micro-structure of paste backfill based on image analysis technology [J]. Journal of Central South University, 2018, 25(10): 2360–2372. DOI: https://doi.org/10.1007/s11771-018-3920-7.

    Article  Google Scholar 

  2. LIU Lang, ZHOU Peng, FENG Yan, ZHANG Bo, SONG K I. Quantitative investigation on micro-parameters of cemented paste backfill and its sensitivity analysis [J]. Journal of Central South University, 2020, 27(1): 267–276. DOI: https://doi.org/10.1007/s11771-020-4294-1.

    Article  Google Scholar 

  3. ALDHAFEERI Z, FALL M, POKHAREL M, POURAMINI Z. Temperature dependence of the reactivity of cemented paste backfill[J]. Applied Geochemistry, 2016, 72(9): 10–19. DOI: https://doi.org/10.1016/j.apgeochem.2016.06.005.

    Article  Google Scholar 

  4. POKHAREL M, FALL M. Combined influence of sulphate and temperature on the saturated hydraulic conductivity of hardened cemented paste backfill [J]. Cement and Concrete Composites, 2013, 38(4): 21–28. DOI: https://doi.org/10.1016/j.cemconcomp.2013.03.015.

    Article  Google Scholar 

  5. FALL M, SAMB S S. Effect of high temperature on strength and microstructural properties of cemented paste backfill [J]. Fire Safety Journal, 2009, 44(4): 642–651. DOI: https://doi.org/10.1016/j.firesaf.2008.12.004.

    Article  Google Scholar 

  6. FALL M, POKHAREL M. Coupled effects of sulphate and temperature on the strength development of cemented tailings backfills: Portland cement-paste backfill [J]. Cement and Concrete Composites, 2010, 32(10): 819–828. DOI: https://doi.org/10.1016/j.cemconcomp.2010.08.002.

    Article  Google Scholar 

  7. XU Wen-bin, HOU Yun-bing, SONG Wei-dong, ZHOU Yi-pei, YIN Tian-jun. Resistivity and thermal infrared precursors associated with cemented backfill mass [J]. Journal of Central South University, 2016, 23(9): 2329–2335. DOI: https://doi.org/10.1007/s11771-016-3291-x.

    Article  Google Scholar 

  8. YILMAZ E, BELEM T, BUSSIÈRE B, MBONIMPA M, BENZAAZOUA M. Curing time effect on consolidation behavior of cemented paste backfill containing different cement types and contents [J]. Construction and Building Materials, 2015, 75(75): 99–111. DOI: https://doi.org/10.1016/j.conbuildmat.2014.11.008.

    Article  Google Scholar 

  9. ALDHAFEERI Z, FALL M. Time and damage induced changes in the chemical reactivity of cemented paste backfill [J]. Journal of Environmental Chemical Engineering, 2016, 4(4): 4038–4049. DOI: https://doi.org/10.1016/j.jece.2016.09.006.

    Article  Google Scholar 

  10. KASSAB M A, WELLER A. Study on P-wave and S-wave velocity in dry and wet sandstones of Tushka region, Egypt [J]. Egyptian Journal of Petroleum, 2015, 24(1): 1–11. DOI: https://doi.org/10.1016/j.ejpe.2015.02.001.

    Article  Google Scholar 

  11. LEE O S, KIM M S. Dynamic material property characterization by using split Hopkinson pressure bar (SHPB) technique [J]. Nuclear Engineering and Design, 2003, 226(2): 119–125. DOI: https://doi.org/10.1016/S0029-5493(03)00189-4.

    Article  Google Scholar 

  12. LIU Zhi-xiang, LAN Ming, XIAO Si-you, GUO Hu-qiang. Damage failure of cemented backfill and its reasonable match with rock mass [J]. Transactions of Nonferrous Metals Society of China, 2015, 25(3): 954–959. DOI: https://doi.org/10.1016/S1003-6326(15)63684-6.

    Article  Google Scholar 

  13. CAO Shuai, YILMAZ E, SONG Wei-dong. Dynamic response of cement-tailings matrix composites under SHPB compression load [J]. Construction and Building Materials, 2018, 186(10): 892–903. DOI: https://doi.org/10.1016/j.conbuildmat.2018.08.009.

    Article  Google Scholar 

  14. ZHANG Yun-hai, WANG Xin-ming, WEI Chong, ZHANG Qin-li. Dynamic mechanical properties and instability behavior of layered backfill under intermediate strain rates [J]. Transactions of Nonferrous Metals Society of China, 2017, 27(7): 1608–1617. DOI: https://doi.org/10.1016/S1003-6326(17)60183-3.

    Article  Google Scholar 

  15. YANG Shan, ZHOU Zhi-long, ZHAO Yi-fei, YANG Wei. Study on dynamic mechanical properties of full tailings cemented backfilling impacted by cement-sand ratio [J]. Advances in Civil Engineering, 2018, 23(9): 1–8. DOI: https://doi.org/10.1155/2018/7184720.

    Google Scholar 

  16. GHIRIAN A, FALL M. Strength evolution and deformation behavior of cemented paste backfill at early ages: Effect of curing stress, filling strategy and drainage [J]. International Journal of Mining Science and Technology, 2016, 26(5): 809–817. DOI: https://doi.org/10.1016/j.ijmst.2016.05.039.

    Article  Google Scholar 

  17. TAN Yu-ye, YU Xin, ELMO D, XU Lin-hui, SONG Wei-dong. Experimental study on dynamic mechanical property of cemented tailings backfill under SHPB impact loading [J]. International Journal of Minerals, Metallurgy and Materials, 2019, 26(4): 404–416. DOI: https://doi.org/10.1007/s12613-019-1749-1.

    Article  Google Scholar 

  18. LIU Lang, YANG Pan, QI Chong-chong, ZHANG Bo, GUO Li-jie, SONG K I. An experimental study on the early-age hydration kinetics of cemented paste backfill [J]. Construction and Building Materials, 2019, 212(10): 283–294. DOI: https://doi.org/10.1016/j.conbuildmat.2019.03.322.

    Google Scholar 

  19. LI Wen-chen, FALL M. Strength and self-desiccation of slag-cemented paste backfill at early ages: Link to initial sulphate concentration [J]. Cement and Concrete Composites, 2018, 89(3): 160–168. DOI: https://doi.org/10.1016/j.cemconcomp.2017.09.019.

    Article  Google Scholar 

  20. LI Wen-chen, FALL M. Sulphate effect on the early age strength and self-desiccation of cemented paste backfill [J]. Construction and Building Materials, 2016, 106(3): 296–304. DOI: https://doi.org/10.1016/j.conbuildmat.2015.12.124.

    Article  Google Scholar 

  21. HOU Chen, ZHU Wan-cheng, YAN Bao-xu, GUAN Kai, DU Jia-fa. Influence of binder content on temperature and internal strain evolution of early age cemented tailings backfill [J]. Construction and Building Materials, 2018, 189(11): 585–593. DOI: https://doi.org/10.1016/j.conbuildmat.2018.09.032.

    Article  Google Scholar 

  22. LI Jian-chun, LI Na-na, LI Hai-bo, ZHAO Jian. An SHPB test study on wave propagation across rock masses with different contact area ratios of joint [J]. International Journal of Impact Engineering, 2017, 105(7): 109–116. DOI: https://doi.org/10.1016/j.ijimpeng.2016.12.011.

    Article  Google Scholar 

  23. AI Di-hao, ZHAO Yue-chao, WANG Qi-fei, LI Cheng-wu. Experimental and numerical investigation of crack propagation and dynamic properties of rock in SHPB indirect tension test [J]. International Journal of Impact Engineering, 2019, 126(4): 135–146. DOI: https://doi.org/10.1016/j.ijimpeng.2019.01.001.

    Article  Google Scholar 

  24. LI Xi-bing, WANG Shi-ming, WENG Li, HUANG Lin-qi, ZHOU Tao, ZHOU Jian. Damage constitutive model of different age concretes under impact load [J]. Journal of Central South University, 2015, 22(2): 693–700. DOI: https://doi.org/10.1007/s11771-015-2572-0.

    Article  Google Scholar 

  25. GONG Feng-qiang, LI Xi-bing, RAO Qiu-hua, LIU Xi-ling. Reference method for determining sample size in SHPB tests of rock materials [J]. Journal of Vibration and Shock, 2013, 32(17): 24–28. DOI: https://doi.org/10.13465/j.cnki.jvs.2013.17.005

    Google Scholar 

  26. HU Xiao-peng, PENG Gang, NIU Di-tao, ZHAO Nan. Damage study on service performance of early-age frozen concrete [J]. Construction and Building Materials, 2019, 210(6): 22–31. DOI: https://doi.org/10.1016/j.conbuildmat.2019.03.199.

    Article  Google Scholar 

  27. FALLON C, MCSHANE G J. Impact mitigating capabilities of a spray-on elastomer coating applied to concrete [J]. International Journal of Impact Engineering, 2019, 128(6): 72–85. DOI: https://doi.org/10.1016/j.ijimpeng.2019.02.003.

    Article  Google Scholar 

  28. IQBAL M A, KUMAR V, MITTAL A K. Experimental and numerical studies on the drop impact resistance of prestressed concrete plates [J]. International Journal of Impact Engineering, 2019, 123(1): 98–117. DOI: https://doi.org/10.1016/j.ijimpeng.2018.09.013.

    Article  Google Scholar 

  29. JU Yang, LIU Hong-bin, SHENG Guo-hua, WANG Hui-jie. Experimental study of dynamic mechanical properties of reactive powder concrete under high-strain-rate impacts [J]. Technological Sciences, 2010, 53(9): 2435–2449. DOI: https://doi.org/10.1007/s11431-010-4061-x.

    Article  Google Scholar 

  30. LEE S, KIM K M, PARK J, CHO J Y. Pure rate effect on the concrete compressive strength in the split Hopkinson pressure bar test [J]. International Journal of Impact Engineering, 2018, 113(3): 191–202. DOI: https://doi.org/10.1016/j.ijimpeng.2017.11.015.

    Article  Google Scholar 

Download references

Funding

Project(CXZZBS2019126) supported by the Innovative Support Program for Doctoral Students in Hebei Province, China; Project(QN2019078) supported by the Science and Technology Research Project of Colleges and University in Hebei Province, China; Project(51774137) supported by the National Natural Science Foundation of China

Author information

Authors and Affiliations

Authors

Contributions

LIU Zhi-yi and GAN De-qing provided the concept and edited the draft of manuscript. GAN De-qing revised the experiment program. LIU Zhi-yi and GAN Ze carried out experiments and processed the data. LIU Zhi-yi conducted the literature review and wrote the first draft of the manuscript. GAN Ze edited the draft of manuscript.

Corresponding author

Correspondence to Zhi-yi Liu  (刘志义).

Additional information

Conflict of interest

All the authors state that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Zy., Gan, Dq. & Gan, Z. Dynamic regimes of cemented backfill at early-age. J. Cent. South Univ. 28, 2079–2090 (2021). https://doi.org/10.1007/s11771-021-4754-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-021-4754-2

Key words

关键词

Navigation