Skip to main content
Log in

The Compressive Behavior of Cemented Tailings Backfill under the Action of Different Curing Temperature and Age

  • ROCK FAILURE
  • Published:
Journal of Mining Science Aims and scope

Abstract

During the backfilling mining process, the strength of backfilling body is continuously affected by the temperature. Unconfined compressive strength (UCS) tests were performed on cemented tailings backfill (CTB) samples cured at different temperatures. The results show that UCS increases linearly with the increase of curing temperature during the age of 3 to 7 days, while it shows an exponential relationship with the curing temperature during the age of 7 to 28 days and the growth rate gradually slows down. As the curing temperature and age increases, the microstructure becomes denser, meanwhile, UCS becomes more sensitive to variances in age, and the failure patterns of CTB samples change from crushing failure to tensile failure. The established formula can well describe the coupling effect of curing temperature and age on UCS, which can provide a certain reference for CTB strength design and mining.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

REFERENCES

  1. Wang, H.J., Wang, Y.J., Li, W.C., and Qiao, J.H., The Report of Mineral Resources Saving and Comprehensive Utilization in China, Natural Resource Economics of China, 2020, vol. 33, no. 2.

  2. Queiroz, H.M., Nóbrega, G.N., Ferreira, T.O., Almeida, L.S., Romero, T.B., Santaella, S.T., Bernardino, A.F., and Otero, X.L., The Samarco Mine Tailing Disaster: A Possible Time-Bomb for Heavy Metals Contamination? Sci. Total Environ., 2018, 637–638: pp. 498–506.

    Article  Google Scholar 

  3. Yin, G., Li, G., Wei, Z., Wan, L., Shui, G., and Jing, X., Stability Analysis of a Copper Tailings Dam via Laboratory Model Tests: A Chinese Case Study, Miner. Eng., 2011, vol. 24, pp. 122–130.

    Article  Google Scholar 

  4. Sharma, R.S. and Al-Busaidi, T.S., Groundwater Pollution due to a Tailings Dam, Eng. Geol., 2001, vol. 60, pp. 235–244.

    Article  Google Scholar 

  5. Fall, M., Belem, T., Samb, S., and Benzaazoua, M., Experimental Characterization of the Stress–Strain Behaviour of Cemented Paste Backfill in Compression, J. Mater. Sci., 2007, vol. 42, pp. 3914–3922.

    Article  Google Scholar 

  6. Yilmaz, E., Belem, T., Bussiere, B., Mbonimpa, M., and Benzaazoua, M., Curing Time Effect on Consolidation Behaviour of Cemented Paste Backfill Containing Different Cement Types and Contents, Constr. Build. Mater., 2015, vol. 75, pp. 99–111.

    Article  Google Scholar 

  7. Wu, A.X., Wang, Y., Wang, H.J., Yin, S.H., and Miao, X.X., Coupled Effects of Cement Type and Water Quality on the Properties of Cemented Paste Backfill, Int. J. Miner. Process., 2015, vol. 143, pp. 65–71.

    Article  Google Scholar 

  8. Fall, M., Benzaazoua, M., and Ouellet, S., Experimental Characterization of the Influence of Tailings Fineness and Density on the Quality of Cemented Paste Backfill, Miner. Eng., 2005, vol. 18, pp. 41–44.

    Article  Google Scholar 

  9. Fall, M., Benzaazoua, M., and Saa, E.G., Mix Proportioning of Underground Cemented Tailings Backfill, Tunnelling and Underground Space Technol., 2008, vol. 23, pp. 80–90.

    Article  Google Scholar 

  10. Yang, K.H., Mun, J.S., and Jeong, J.E., Compressive Strength Development of High-Strength Concrete under Different Curing Temperatures, Adv. Mater. Res., 2014, vol. 905, pp. 195–198.

    Article  Google Scholar 

  11. Kim, J.K., Moon, Y.H., and Eo, S.H., Compressive Strength Development of Concrete with Different Curing Time and Temperature, Cem. Concr. Res., 1998, vol. 28, pp. 1761–1773.

    Article  Google Scholar 

  12. Wang, Y.Y., Wang, H.W., and Shi, X., Creep Investigation on Shale-Like Material with Preexisting Fissure under Coupling Temperatures and Confining Pressures, Advances in Civil Eng., 2019, vol. 11, pp. 1–10.

    Google Scholar 

  13. Wei, S.J., Yang, Y.S., Su, C.D., Cardosh, S.R., and Wang, H., Experimental Study of the Effect of High Temperature on the Mechanical Properties of Coarse Sandstone, Appl. Sci-Basel, 2019, vol. 9.

  14. Fall, M., Celestin, J.C., Pokharel, M., and Toure, M., A Contribution to Understanding the Effects of Curing Temperature on the Mechanical Properties of Mine Cemented Tailings Backfill, Eng. Geol., 2010, vol. 114, pp. 397–413.

    Article  Google Scholar 

  15. He, M. and Guo, P., Deep Rock Mass Thermodynamic Effect and Temperature Control Measures, Chinese J. Rock Mech. Eng., 2013, vol. 32, pp. 2377–2393.

    Google Scholar 

  16. Jiang, H.Q., Fall, M., and Cui, L., Freezing Behaviour of Cemented Paste Backfill Material in Column Experiments, Constr. Build. Mater., 2017, vol. 147, pp. 837–846.

    Article  Google Scholar 

  17. Fall, M. and Pokharel, M., Coupled Effects of Sulphate and Temperature on the Strength Development of Cemented Tailings Backfills: Portland Cement-Paste Backfill, Cem. Concr. Compos., 2010, vol. 32, pp. 819–828.

    Article  Google Scholar 

  18. Xu, W.B. and Cao, P.W., Fracture Behaviour of Cemented Tailing Backfill with Pre-Existing Crack and Thermal Treatment under Three-Point Bending Loading: Experimental Studies and Particle Flow Code Simulation, Eng. Fract. Mech., 2018, vol. 195, pp. 129–141.

    Article  Google Scholar 

  19. Morsy, M.S., Effect of Temperature on Electrical Conductivity of Blended Cement Pastes, Cem. Concr. Res., 1999, vol. 29, pp. 603–606.

    Article  Google Scholar 

  20. Husem, M. and Gozutok, S., The Effects of Low Temperature Curing on the Compressive Strength of Ordinary and High Performance Concrete, Constr. Build. Mater., 2005, vol. 19, pp. 49–53.

    Article  Google Scholar 

  21. Rajasekaran, G., Physicochemical Behaviour of Lime Treated Marine Clay, Ph. D. Thesis, Indian Inst. of Tech., 1994.

  22. Jiang, H.Q., Qi, Z.J., Yilmaz, E., Han, J., Qiu, J.P., and Dong, C.L., Effectiveness of Alkali-Activated Slag as Alternative Binder on Workability and Early Age Compressive Strength of Cemented Paste Backfills, Constr. Build. Mater., 2019, vol. 218, pp. 689–700.

    Article  Google Scholar 

  23. Ercikdi, B., Kuekci, G., and Yilmaz, T., Utilization of Granulated Marble Wastes and Waste Bricks as Mineral Admixture in Cemented Paste Backfill of Sulphide-Rich Tailings, Constr. Build. Mater., 2015, vol. 93, pp. 573–583.

    Article  Google Scholar 

  24. Di, W.U., Coupled Effect of Cement Hydration and Temperature on Hydraulic Behavior of Cemented Tailings Backfill, J. Central South University, 2015, vol. 22, no. 5, pp. 1956–1964.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lizhuang Cui, Yongyan Wang, Zhuoqun Yu or Yonggang Zhang.

Additional information

Translated from Fiziko-Tekhnicheskie Problemy Razrabotki Poleznykh Iskopaemykh, 2021, No. 4, pp. 49-62. https://doi.org/10.15372/FTPRPI20210405.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, L., Wang, Y., Yu, Z. et al. The Compressive Behavior of Cemented Tailings Backfill under the Action of Different Curing Temperature and Age. J Min Sci 57, 581–594 (2021). https://doi.org/10.1134/S1062739121040050

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062739121040050

Keywords

Navigation