Skip to main content
Log in

Bioleaching and dissolution kinetics of pyrite, chalcocite and covellite

黄铁矿、辉铜矿和铜蓝的生物浸出及其浸出动力学

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

In this work, the bioleaching process of pyrite, chalcocite and covellite which were the main phase compositions for Zijin copper mineral was comprehensively studied. The influence parameters, such as leaching temperature, Fe3+ concentration, pH of solution and bacteria concentration were investigated. The leaching kinetics of the pyrite, chalcocite and covellite under the studied conditions was successfully modeled by an empirical diffusion-like equation, respectively. The apparent activity energy of pyrite leaching, chalcocite leaching (stage II) and covellite leaching was calculated to be 69.29, 65.02 and 84.97 kJ/mol, respectively.

摘要

研究紫金山铜矿主要矿物黄铁矿、辉铜矿和铜蓝,考察温度、细菌接种浓度、pH 值和 Fe3+浓 度等对矿物溶解动力学的影响,查明影响矿物溶解动力学的主要因素,获得控制氧化速率的关键步骤, 建立半经验动力学模型,经计算,黄铁矿、辉铜矿和铜蓝在浸出过程中的表观活化能分别为 69.29, 65.02 and 84.97 kJ/mol。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ROSSI G. Biohydrometallurgy [M]. Hamburg: McGraw-Hill, 1990.

    Google Scholar 

  2. RAWLINGS D E, JOHNSON B D. Biomining [M]. Springer-Verlag Berlin Heidelberg, 2007.

    Book  Google Scholar 

  3. EDGARDO R, DONATI, WOLFGANG S. Microbial processing of metal sulfides [M]. Springer, 2007.

  4. ZHAO H B, WANG J, HU M H, QIN W Q, ZHANG Y S, QIU G Z. Synergistic bioleaching of chalcopyrite and bornite in the presence of Acidithiobacillus ferrooxidans [J]. Bioresource Technology, 2013, 149: 71–76. DOI: https://doi.org/10.1016/j.biortech.2013.09.035.

    Article  Google Scholar 

  5. WU B, SHANG H, WEN J K, LIU M L, ZHANG Q D, CUI X L. Well-controlled stirring tank leaching to improve bio-oxidation efficiency of a high sulfur refractory gold concentrate [J]. Journal of Central South University, 2020, 27(5): 1416–1423. DOI: https://doi.org/10.1007/s11771-020-4377-z.

    Article  Google Scholar 

  6. GAN M, LI J Y, SUN S J, CAO Y Y, ZHENG Z H, ZHU J Y, LIU X X, WANG J, QIU G Z. The enhanced effect of Acidithiobacillus ferrooxidans on pyrite based Cr(VI) reduction [J]. Chemical Engineering Journal, 2018, 341: 27–36. DOI: https://doi.org/10.1016/j.cej.2018.02.014.

    Article  Google Scholar 

  7. YANG B J, LIN M, FANG J H, ZHANG R Y, LUO W, WANG X X, LIAO R, WU B Q, WANG J, GAN M, LIU B, ZHANG Y, LIU X D, QIN W Q, QIU G Z. Combined effects of jarosite and visible light on chalcopyrite dissolution mediated by Acidithiobacillus ferrooxidans [J]. Science of the Total Environment, 2020, 698: 134175. DOI: https://doi.org/10.1016/j.scitotenv.2019.134175.

    Article  Google Scholar 

  8. YANG B J, ZHAO H B, FANG J H, ZHAO C X, LUO W, LIAO R, GAN M, WANG J, LIU X D, QIU G Z. Catalytic effect of silver on copper release from chalcopyrite mediated by Acidithiobacillus ferrooxidans [J]. Journal of Hazardous Materials, 2020, 392: 122290. DOI: https://doi.org/10.1016/j.jhazmat.2020.122290.

    Article  Google Scholar 

  9. WU B, WEN J K, CHEN B W, YAO G C, WANG D Z. Control of redox potential by oxygen limitation in selective bioleaching of chalcocite and pyrite [J]. Rare Metals, 2014, 33(5): 622–627. DOI: https://doi.org/10.1007/s12598-014-0364-6.

    Article  Google Scholar 

  10. ZHAO H B, WANG J, QIN W Q, HU M H, QIU G Z. Electrochemical dissolution of chalcopyrite concentrates in stirred reactor in the presence of Acidithiobacillus ferrooxidans [J]. International Journal of Electrochemical Science, 2015, 10: 848–858. DOI: 10.1.1.666.6424.

    Google Scholar 

  11. POGLIANI C, DONATI E. Immobilisation of Thiobacillus ferrooxidans: Importance of jarosite precipitation [J]. Process Biochemistry, 2000, 35(9): 997–1004. DOI: https://doi.org/10.1016/S0032-9592(00)00135-7.

    Article  Google Scholar 

  12. BACELAR-NICOLAU P, JOHNSON D B. Leaching of pyrite by acidophilic heterotrophic iron-oxidizing bacteria in pure and mixed cultures [J]. Applied & Environmental Microbiology, 1999, 65(2): 585–590. DOI: https://doi.org/10.1128/aem.65.2.585-590.1999.

    Article  Google Scholar 

  13. WANG J, ZHU S, ZHANG Y S, ZHAO H B, HU M H, YANG C R, QIN W Q, QIU G Z. Bioleaching of low-grade copper sulfide ores by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans [J]. Journal of Central South University, 2014, 21: 728–734. DOI: https://doi.org/10.1007/s11771-014-1995-3.

    Article  Google Scholar 

  14. RZHEPISHEVSKA O I, LINDSTROM E B, TUOVINEN O H, DOPSON M. Bioleaching of sulfidic tailing samples with a novel, vacuum-positive pressure driven bioreactor [J]. Biotechnology & Bioengineering, 2005, 92(5): 559–67. DOI: https://doi.org/10.1002/bit.20609.

    Article  Google Scholar 

  15. HALLBERG K B, LINDSTROM E B. Characterization of Thiobacillus caldus sp. nov., a moderately thermophilic acidophile [J]. Microbiology, 1994, 140(4): 3451–3456. DOI: https://doi.org/10.1099/13500872-140-12-3451.

    Article  Google Scholar 

  16. HALLBERG K B, THOMSON H E C, BOESELT I, DOPSON M. Aerobic and anaerobic sulfur metabolism by acidophilic bacteria [M]. Elsevier Science BV, 2001.

  17. RAWLINGS D E. Characteristics and adaptability of iron-and sulfur-oxidizing microorganisms used for the recovery of metals from minerals and their concentrates [J]. Microbial Cell Factories, 2005, 4(1): 54–56. DOI: https://doi.org/10.1186/1475-28594-13.

    Article  Google Scholar 

  18. KARAVAIKO G I, BOGDANOVA T I, TOUROVA T P, KONDRAT’EVA T F, TSAPLINA I A, EGOROVA M A, KRASIL’NIKOVA E N, ZAKHARCHUK L M. Reclassification of Sulfobacillus thermosulfidooxidans subsp. Thermotolerans’ strain K1 as Alicyclobacillus tolerans sp. nov. and Sulfobacillus disulfidooxidans Dufresne et al. 1996 as Alicyclobacillus disulfidooxidans comb. nov., and emended description of the genus Alicyclobacillus [J]. International Journal of Systematic & Evolutionary Microbiology, 2005, 55(2): 941–947. DOI: https://doi.org/10.1099/ijs.0.63300-0.

    Article  Google Scholar 

  19. HONG M X, WANG X X, WU L B, FANG C J, HUANG X T, LIAO R, ZHAO H B, QIU G Z, WANG J. Intermediates transformation of bornite bioleaching by Leptospirillum ferriphilum and Acidithiobacillus caldus [J], Minerals, 2019, 9: 159. DOI: https://doi.org/10.3390/min9030159.

    Article  Google Scholar 

  20. QIN W Q, WANG J, ZHANG Y S, ZHEN S J, SHANG H, LIU Q, SHI H B, ZHANG J W, QIU G Z. Electrochemical behavior of massive bornite bioleached electrodes in the presence of acidithiobacillus ferrooxidans and acidithiobacillus caldus [J]. Advanced Materials Research, 2009, 71–73: 417–420. DOI: https://doi.org/10.4028/www.scientific.net/AMR.71-73.417.

    Article  Google Scholar 

  21. NORRIS P R, MURRELL J C, HINSON D. The potential for diazotrophy in iron and sulfur oxidizing acidophilic bacteria [J]. Archives of Microbiology, 2010, 164(4): 294–300. DOI: https://doi.org/10.1007/BF02529964.

    Article  Google Scholar 

  22. PARRO V, MORENO-PAZ M. Gene function analysis in environmental isolates: The nifregulon of the strict iron oxidizing bacterium Leptospirillum ferrooxidans [J]. Proceedings of the National Academy of Sciences, 2003, 100(13): 7883–7888. DOI: https://doi.org/10.1073/pnas.1230487100.

    Article  Google Scholar 

  23. ROHWERDER T, GEHRKE T, KINZLER K, SAND W. Bioleaching review part A: Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation [J]. Applied Microbiology & Biotechnology, 2003, 63(3): 239–48. DOI: https://doi.org/10.1007/s00253-013-4954-2.

    Article  Google Scholar 

  24. RAWLINGS D E, CORAM N J, GARDNER M N, DEANE S M. Thiobacillus caldus and Leptospirillum ferrooxidans are widely distributed in continuous-flow biooxidation tanks used to treat a variety of metal- containing ores and concentrates [J]. Process Metallurgy, 1999, 9(9): 777–786. DOI: https://doi.org/10.1016/S1572-4409(99)80080-7.

    Article  Google Scholar 

  25. GOLYSHINA O V, PIVOVAROVA T A, GOLYSHINA P N. Ferroplasma acidiphilum gen. nov., sp. nov., an acidophilic, autotrophic, ferrous-iron-oxidizing, cell-wall-lacking, mesophilic member of the Ferroplasmaceae fam. nov., comprising a distinct lineage of the Archaea [J]. International Journal Evolutionary Microbiology, 2000, 50: 997–1006. DOI: https://doi.org/10.1099/00207713-50-3-997.

    Google Scholar 

  26. DOPSON M, BAKER-AUSTIN C, HIND A, BOWMAN J P, BOND P L. Characterization of Ferroplasma isolates and Ferroplasma acidarmanus sp nov., extreme acidophiles from acid mine drainage and industrial bioleaching environments [J]. Applied & Environmental Microbiology, 2004, 70(4): 2079–88. DOI: https://doi.org/10.1128/AEM.70.4.2079-2088.2004.

    Article  Google Scholar 

  27. JOHNSON D B, HALLBERG K B. The microbiology of acidic mine waters [J]. Research in Microbiology, 2003, 154(7): 466–473. DOI: https://doi.org/10.1016/S0923-2508(03)00114-1.

    Article  Google Scholar 

  28. WU B, WEN J K, CHEN B W. Control of redox potential by oxygen limitation in selective bioleaching of chalcocite and pyrite [J]. Rare Metals, 2014, 33(5): 622–627. DOI: https://doi.org/10.1007/s12598-014-0364-6.

    Article  Google Scholar 

  29. LEVENSPIEL O. Chemical reaction engineering [M]. 2nd ed. New York: John Wiley and Sons, 1972.

    Google Scholar 

  30. MA R J. Principle on hydrometallurgy [M]. Beijing: Metallurgical Industry Press, 2007. (in Chinese)

    Google Scholar 

  31. TIAN Y W, ZHAI X J, LIU K R. Short course of metallurgical physical chemistry [M]. Beijing: Chemical Industry Press, 2007.

    Google Scholar 

  32. DEMIRKIRAN N. A study on dissolution of ulexite in ammonium acetate solutions [J]. Chemical Engineering Journal, 2008, 141: 180–186. DOI: https://doi.org/10.1016/j.cej.2007.12.012.

    Article  Google Scholar 

  33. GAO W C, WEN J K, LI Z B. Dissolution kinetics of magnesium from calcined serpentine in NH4Cl solution [J]. Industrial & Engineering Chemistry Research, 2014, 53: 7947–7955. DOI: https://doi.org/10.1021/ie4043533.

    Article  Google Scholar 

  34. GAO W C, WEN J K, WU B, SHANG H, LIU X. A novel approach to extract Nb, Y and Ce from a niobium-bearing ore of low grade by roasting KHSO4-H2SO4 system [J]. Rare Metals, 2021, 40, 1979–1986. DOI: https://doi.org/10.1007/s12598-020-01435-z.

    Article  Google Scholar 

  35. ANTONIJEVIC M M, DIMITRIJEVIC M, JANKOVIC Z. Leaching of pyrite with hydrogen peroxide in sulphuric acid [J]. Hydrometallurgy, 1997, 46(46): 71–83. DOI: https://doi.org/10.1016/S0304-386X(96)00096-5.

    Article  Google Scholar 

  36. SYLVIE C B, BERNY F R V, DAVID G D. Leaching kinetics and stoichiometry of pyrite oxidation from a pyrite-marcasite concentrate in acid ferric sulfate media [J]. Hydrometallurgy, 2006, 84(3, 4): 225–238. DOI: https://doi.org/10.1016/j.hydromet.2006.05.008.

    Google Scholar 

  37. TANDA B C, EKSTEEN J J, ORABY E A. Kinetics of chalcocite leaching in oxygenated alkaline glycine solutions [J]. Hydrometallurgy, 2018, 178: 264–273. DOI https://doi.org/10.3390/min8100461.

    Article  Google Scholar 

  38. CHENG C Y, LAWSON F. The kinetics of leaching covellite in acidic oxygenated sulphate-chloride solutions [J]. Hydrometallurgy, 1991, 27(3): 269–284. DOI: https://doi.org/10.1016/0304-386X(91)90054-P.

    Article  Google Scholar 

  39. CARLOS A. Kinetics of leaching of covellite in ferric-sulfate-sulfuric acid media [D]. The university of British Columbia, 2015. DOI: https://doi.org/10.14288/1.0166616.

  40. YU S C, YANG B J, FANG C J, ZHANG Y S, LIU S T, ZHANG Y S, SHEN L, XIE J P, WANG J. Dissolution mechanism of the oxidation process of covellite by ferric and ferrous ions [J]. Hydrometallurgy, 2021, 201: 105585. DOI: https://doi.org/10.1016/j.hydromet.2021.105585.

    Article  Google Scholar 

Download references

Funding

Project(51574036) supported by the National Natural Science Foundation of China

Author information

Authors and Affiliations

Authors

Contributions

The overarching research goals were developed by SHANG He, GAO Wen-cheng, WU Biao and WEN Jian-kang. SHANG He and WU Biao provided the concept and edited the draft of manuscript. SHANG He conducted the literature review and GAO Wen-cheng wrote the first draft of the manuscript. SHANG He and GAO Wen-cheng analyzed the measured data. SHANG He, GAO Wen-cheng, WU Biao and WEN Jian-kang edited the draft of manuscript. All the authors replied to reviewers’ comments and revised the final version.

Corresponding author

Correspondence to Wen-cheng Gao  (高文成).

Additional information

Conflict of interest

SHANG He, GAO Wen-cheng, WU Biao and WEN Jian-kang declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shang, H., Gao, Wc., Wu, B. et al. Bioleaching and dissolution kinetics of pyrite, chalcocite and covellite. J. Cent. South Univ. 28, 2037–2051 (2021). https://doi.org/10.1007/s11771-021-4751-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-021-4751-5

Key words

关键词

Navigation