Skip to main content
Log in

Iron and copper recovery from copper slags through smelting with waste cathode carbon from aluminium electrolysis

以铝电解废阴极炭为添加剂熔融还原回收铜渣中的铜和铁

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

To recover metal from copper slags, a new process involving two steps of oxidative desulfurization followed by smelting reduction was proposed in which one hazardous waste (waste cathode carbon) was used to treat another (copper slags). The waste cathode carbon is used not only as a reducing agent but also as a fluxing agent to decrease slag melting point. Upon holding for 60 min in air atmosphere first and then smelting with 14.4 wt% waste cathode carbon and 25 wt% CaO for 180 min in high purity Ar atmosphere at 1450 °C, the recovery rates of Cu and Fe reach 95.89% and 94.64%, respectively, and meanwhile greater than 90% of the fluoride from waste cathode carbon is transferred into the final slag as CaF2 and Ca2Si2F2O7, which makes the content of soluble F in the slag meet the national emission standard. Besides, the sulphur content in the obtained Fe-Cu alloy is low to 0.03 wt%.

摘要

为了回收铜渣中的铜和铁,本文提出了一种铜渣氧化脱硫-废阴极碳熔融还原两步处理新工艺,在熔融还原过程中,废阴极碳不仅可作为还原剂,同时也可作为助熔剂降低熔渣熔点。在 1450 °C 时,铜渣在空气气氛中保温 60 min 后,添加 14.4 wt%的废阴极碳和 25 wt%的 CaO 至铜熔渣中并在高纯Ar 气氛下进行熔融还原 180 min,Cu 和 Fe 的回收率分别可以达到 95.89%和 94.64%。同时,废阴极碳中 90%以上的氟化物以 CaF2 和 Ca2Si2F2O7 形式转移至尾渣中,炉渣中可溶性 F 含量达到国家排放标准。此外,所得 Fe-Cu 合金中硫含量低至0.03 wt%。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ZHANG Jun, QI Yuan-hong, YAN Ding-liu, XU Hai-chuan. A new technology for copper slag reduction to get molten iron and copper matte [J]. Journal of Iron and Steel Research International, 2015, 22(5): 396–401. DOI: https://doi.org/10.1016/S1006-706X(15)30018-2.

    Article  Google Scholar 

  2. ZHOU Xian-lin, ZHU De-qing, PAN Jian, WU Teng-jiao, Utilization of waste copper slag to produce directly reduced iron for weathering resistant steel [J]. ISIJ International, 2015, 55(7): 1347–1352. DOI: https://doi.org/10.2355/isijinternational.55.1347.

    Article  Google Scholar 

  3. SHARMA R, KHAN R A. Sustainable use of copper slag in self compacting concrete containing supplementary cementitious materials [J]. Journal of Cleaner Production, 2017, 151: 179–192. DOI: https://doi.org/10.1016/j.jclepro.2017.03.031.

    Article  Google Scholar 

  4. HEO J H, CHUNG Y, PARK J H. Recovery of iron and removal of hazardous elements from waste copper slag via a novel aluminothermic smelting reduction (ASR) process [J]. Journal of Cleaner Production, 2016, 137: 777–787. DOI: https://doi.org/10.1016/j.jclepro.2016.07.154.

    Article  Google Scholar 

  5. MURARI K, SIDDIQE R, JAIN K. Use of waste copper slag, a sustainable material [J]. Journal of Material Cycles and Waste Management, 2015, 17: 13–26. DOI: https://doi.org/10.1007/s10163-014-0254-x.

    Article  Google Scholar 

  6. GYUROV S, MARINKOV N, KOSTOVA Y, RABADJIEVA D, KOVACHEVA D, TZVETKOVA C, GENTSCHEVA G, PENKOV I. Technological scheme for copper slag processing [J]. International Journal of Mineral Processing, 2017, 158: 1–7. DOI: https://doi.org/10.1016/j.minpro.2016.11.008.

    Article  Google Scholar 

  7. SHIBAYAMA A, TAKASAKI Y, WILLIAM T, YAMATODANI A, HIGUCHI Y, SUNAGAWA S, ONO E. Treatment of smelting residue for arsenic removal and recovery of copper using pyro-hydrometallurgical process [J]. Journal of hazardous materials, 2010, 181: 1016–1023. DOI: https://doi.org/10.1016/j.jhazmat.2010.05.116.

    Article  Google Scholar 

  8. GUO Zheng-qi, ZHU De-qing, PAN Jian, ZHANG Feng. Mechanism of mineral phase reconstruction for improving the beneficiation of copper and iron from copper slag [J]. JOM, 2016, 68(9): 2341–2348. DOI: https://doi.org/10.1007/s11837-016-2082-z.

    Article  Google Scholar 

  9. SARFO P, DAS A, WYSS G, YOUNG C. Recovery of metal values from copper slag and reuse of residual secondary slag [J]. Waste Management, 2017, 70: 272–281. DOI: https://doi.org/10.1016/j.wasman.2017.09.024.

    Article  Google Scholar 

  10. ZHANG Chang-da, HU Bin, WANG Hua-guang, WANG Ming-yu, WANG Xue-wen. Recovery of valuable metals from copper slag [J]. Mining, Metallurgy & Exploration, 2020, 37: 1241–1251. DOI: https://doi.org/10.1007/s42461-020-00224-7.

    Article  Google Scholar 

  11. GUO Zheng-qi, PAN Jian, ZHU De-qing, YANG Cong-cong. Mechanism of composite additive in promoting reduction of copper slag to produce direct reduction iron for weathering resistant steel [J]. Powder Technology, 2018, 329: 55–64. DOI: https://doi.org/10.1016/j.powtec.2018.01.063.

    Article  Google Scholar 

  12. GUO Zheng-qi, PAN Jian, ZHU De-qing, ZHANG Feng. Green and efficient utilization of waste ferric-oxide desulfurizer to clean waste copper slag by the smelting reduction-sulfurizing process [J]. Journal of Cleaner Production, 2018, 199: 891–899. DOI: https://doi.org/10.1016/j.jclepro.2018.07.203.

    Article  Google Scholar 

  13. SARFO P, WYSS G, MA G, DAS A, YOUNG C. Carbothermal reduction of copper smelter slag for recycling into pig iron and glass [J]. Minerals Engineering, 2017, 107: 8–19. DOI: https://doi.org/10.1016/j.mineng.2017.02.006.

    Article  Google Scholar 

  14. HEO J H, KIM B S, PARK J H. Effect of CaO addition on iron recovery from copper smelting slags by solid carbon [J]. Metallurgical and Materials Transactions B, 2013, 44(6): 1352–1363. DOI: https://doi.org/10.1007/s11663-013-9908-7.

    Article  Google Scholar 

  15. GUO Zheng-qi, ZHU De-qing, PAN Jian, YAO Wei-jie, XU Wu-qi and CHEN Jin-an. Effect of Na2CO3 addition on carbothermic reduction of copper smelting slag to prepare crude Fe-Cu alloy [J]. The Journal of The Minerals, Metals & Materials Society, 2017, 69(4): 1–8. DOI: https://doi.org/10.1007/s11837-017-2410-y.

    Google Scholar 

  16. LI Lei, HU Jian-hang, WANG Hua. Smelting oxidation desulfurization of copper slags [J]. Journal of Iron and Steel Research International, 2012, 19(12): 14–20. DOI: https://doi.org/10.1016/S1006-706X(13)60026-6.

    Article  Google Scholar 

  17. LIU Hai-ying, WANG Jin-ling, SHEN Shi-fu, LUO You-fa. Study on process mineralogy of a used cathode of carbon block from electrolytic aluminum factory [J]. Procedia Environmental Sciences, 2012, 16: 749–757. DOI: https://doi.org/10.1016/j.proenv.2012.10.102.

    Article  Google Scholar 

  18. WANG Jin-ling, LIU Hai-ying, LUO You-fa, NIU Qing-ren, HE Hua, SHEN Shi-fu. Study on harmless and resources recovery treatment technology of waste cathode carbon blocks from electrolytic aluminum [J]. Procedia Environmental Sciences, 2012, 16: 769–777. DOI: https://doi.org/10.1016/j.proenv.2012.10.105.

    Article  Google Scholar 

  19. YANG Kai, ZHAO Ze-jun, XIN Xin, TIAN Zhong-liang, PENG Ke, LAI Yan-qing. Graphitic carbon materials extracted from spent carbon cathode of aluminium reduction cell as anodes for lithium ion batteries: Converting the hazardous wastes into value-added materials [J]. Journal of the Taiwan Institute of Chemical Engineers, 2019, 104: 201–209. DOI: https://doi.org/10.1016/j.jtice.2019.09.012.

    Article  Google Scholar 

  20. SHI Zhong-ning, LI Wei, HU Xian-wei, REN Bi-jun, GAO Bing-liang, WANG Zhao-wen. Recovery of carbon and cryolite from spent pot lining of aluminium reduction cells by chemical leaching [J]. Transactions of the Nonferrous Metals Society of China, 2012, 22(1): 222–227. DOI: https://doi.org/10.1016/S1003-6326(11)61164-3.

    Article  Google Scholar 

  21. XIE Wu-ming, ZHOU Feng-ping, LIU Jiang-yong, BI Xiaolin, HUANG Zi-jun, LI Yu-hui, CHEN Dong-dong, ZOU Haiyuan, SUN Shui-yu. Synergistic reutilization of red mud and spent pot lining for recovering valuable components and stabilizing harmful element [J]. Journal of Cleaner Production, 2020, 243: 118624. DOI: https://doi.org/10.1016/j.jclepro.2019.118624.

    Article  Google Scholar 

  22. LI Xiao-ming, YIN Wei-dong, FANG Zhao, LIU Qi-hang, CUI Ya-ru, ZHAO Jun-xue, JIA Hao. Recovery of carbon and valuable components from spent pot lining by leaching with acidic aluminum anodizing wastewaters [J]. Metallurgical and Materials Transactions B, 2019, 50: 914–923. DOI: https://doi.org/10.1007/s11663-018-1485-3.

    Article  Google Scholar 

  23. ZHAO Xia, MA Lei. Hazardous waste treatment for spent pot liner [C]// 3rd International Conference on Environmental Science and Material Application. Chongqing, China: IOP Conference Series. 2018, 108: 042023. DOI: https://doi.org/10.1088/1755-1315/108/4/042023.

    Google Scholar 

  24. ØYE H A. Discussion of industrial spent pot lining treatment [C]// Proceedings of 35th International ICSOBA Conference. Hamburg, Germany. 2017: 1081–1088. https://scholar.google.com.hk/scholar?q=Discussion+of+Industrial+Spent+Pot+Lining+Treatment&hl=zh-CN&as_sdt=0&as_vis=1&oi=scholart.

  25. GUO Zheng-qi, PAN Jian, ZHU De-qing, ZHANG Feng. Co-reduction of copper smelting slag and nickel laterite to prepare Fe-Ni-Cu alloy for weathering steel [J]. The Journal of the Minerals, Metals & Materials Society, 2018, 70: 150–154. DOI: https://doi.org/10.1007/s11837-017-2641-y.

    Article  Google Scholar 

  26. RATHORE S S, SALVE M M, DABHADE V V. Effect of molybdenum addition on the mechanical properties of sinter-forged Fe-Cu-C alloys [J]. Journal of Alloys and Compounds, 2015, 649: 988–995. DOI: https://doi.org/10.1016/j.jallcom.2015.07.156.

    Article  Google Scholar 

  27. GB5085.3-2007. Identification standards for hazardous wastes Identification for extraction toxicity (GB5085.3-2007) in China [S]. https://www.doc88.com/p-7758295606122.html.

  28. BUSOLIC D, PARADA F, PARRA R, SANCHEZ M, PALACIOS J, HINO M. Recovery of iron from copper flash smelting slags [J]. Mineral Processing and Extractive Metallurgy, 2011, 120: 32–36. DOI: https://doi.org/10.1179/037195510X12772935654945.

    Article  Google Scholar 

  29. RUSEN A, GEVECI A, TOPKAYA Y A, DERIN B. Effects of some additives on copper losses to matte smelting slag [J]. JOM, 2016, 68(9): 2323–2331. DOI: https://doi.org/10.1007/s11837-016-1825-1.

    Article  Google Scholar 

  30. WU Cheng-chuan, CHENG Guo-guang, TIAN Jun. A thermodynamic model for evaluation of mass action concentrations of Ce2O3-contained slag systems based on the ion and molecule coexistence theory [J]. High Temperature Materials & Processes, 2013, 32(6): 541–550. DOI: https://doi.org/10.1515/htmp-2012-0119.

    Article  Google Scholar 

  31. NAKAMOTO M, KIYOSE A, TANAKA T, HOLAPPA L, HAMALAINEN M. Evaluation of the surface tension of ternary silicate melts containing Al2O3, CaO, FeO, MgO or MnO [J]. ISIJ International, 2007, 47(1): 38–43. DOI: https://doi.org/10.2355/isijinternational.47.38.

    Article  Google Scholar 

  32. HANAO M, TANAKA T, KAWAMOTO M, TAKATANI K. Evaluation of surface tension of molten slag in multi-component systems [J]. ISIJ International, 2007, 47(7): 935–939. DOI: https://doi.org/10.2355/isijinternational.47.935.

    Article  Google Scholar 

Download references

Funding

Project(U1602272) supported by the National Natural Science Foundation of China

Author information

Authors and Affiliations

Authors

Contributions

MAO Kai-xuan performed the data analyses and wrote the manuscript, LI Lei performed the analysis with constructive discussions and contributed significantly to manuscript preparation, XU Miao contributed to the validation of this study.

Corresponding author

Correspondence to Lei Li  (李磊).

Additional information

Conflict of interest

MAO Kai-xuan, LI Lei and XU Miao declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, Kx., Li, L. & Xu, M. Iron and copper recovery from copper slags through smelting with waste cathode carbon from aluminium electrolysis. J. Cent. South Univ. 28, 2010–2021 (2021). https://doi.org/10.1007/s11771-021-4749-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-021-4749-z

Keywords

关键词

Navigation