Skip to main content
Log in

A new nonlinear empirical strength criterion for rocks under conventional triaxial compression

一种岩石在三轴压缩条件下的非线性经验强度准则

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The failure criterion of rocks is a critical factor involved in reliability design and stability analysis of geotechnical engineering. In order to accurately evaluate the triaxial compressive strength of rocks under different confining pressures, a nonlinear empirical strength criterion based on Mohr-Coulomb criterion was proposed in this paper. Through the analysis of triaxial test strength of 11 types of rock materials, the feasibility and validity of proposed criterion was discussed. For a further verification, six typical strength criteria were selected, and the prediction results of each criterion and test results were statistically analyzed. The comparative comparison results show that the prediction results obtained by applying this new criterion to 97 conventional triaxial compression tests of 11 different rock materials are highly consistent with the experimental data. Statistical analysis was executed to assess the application of the new criterion and other classical criteria in predicting the failure behavior of rock. This proposed empirical criterion provides a new reference and method for the determination of triaxial compressive strength of rock materials.

摘要

岩石的破坏准则是岩土工程可靠性设计和稳定性分析的关键因素。为了准确地评价不同围压条 件下岩石的三轴抗压强度, 本文提出了一种基于莫尔-库仑准则的非线性经验强度准则。通过分析11 种岩石材料三轴试验强度, 探讨了所提出准则的可行性和有效性。为进一步验证, 选取了6 个典型强 度准则, 并对各准则的预测结果和试验结果进行对比分析。对比结果表明, 应用本文提出的准则对11 种不同岩石材料进行97 个常规三轴压缩试验, 预测结果与试验结果高度一致。将本文提出的准则和 其他经典准则在预测岩石破坏行为中的应用效果进行统计分析和评估, 表明本文建立的经验准则可以 为岩石材料三轴抗压强度的确定提供新的参考和方法。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ZHANG K, LI N, LIU W L, XIE J B. Experimental study of the mechanical, energy conversion and frictional heating characteristics of locking sections [J]. Eng Fract Mech, 2020, 228: 106905. DOI: https://doi.org/10.1016/j.engfracmech.2020.106905.

    Article  Google Scholar 

  2. XIE Shi-jie, LIN Hang, WANG Yi-xian, CAO Ri-hong, YONG Rui, DU Shi-gui. Nonlinear shear constitutive model for peak shear-type joints based on improved Harris damage function [J]. Archives of Civil and Mechanical Engineering, 2020, 20 (3): Article number 95. DOI: https://doi.org/10.1007/s43452-020-00097-z.

  3. YANG S Q, YIN P F, ZHANG Y C, CHEN M, ZHOU X P, JING H W, ZHANG C Y. Failure behavior and crack evolution mechanism of a non-persistent jointed rock mass containing a circular hole [J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 114: 101–121. DOI: https://doi.org/10.1016/j.ijrmms.2018.12.017.

    Article  Google Scholar 

  4. LIN Q B, CAO P, CAO R H, LIN H, MENG J J. Mechanical behavior around double circular openings in a jointed rock mass under uniaxial compression [J]. Archives of Civil and Mechanical Engineering, 2020, 20 (1): Article number 19. DOI: https://doi.org/10.1007/s43452-020-00027-z.

  5. ZUO J P, CHEN Y, LIU X L. Crack evolution behavior of rocks under confining pressures and its propagation model before peak stress [J]. Journal of Central South University, 2019, 26: 3045–3056. DOI: https://doi.org/10.1007/s11771-019-4235-z.

    Article  Google Scholar 

  6. SHI G C, CHEN G, PAN Y T, YANG X L, LIU Y, DAI G Z. Stress-drop effect on brittleness evaluation of rock materials [J]. Journal of Central South University, 2019, 26: 1807–1819. DOI: https://doi.org/10.1007/s11771-019-4135-2.

    Article  Google Scholar 

  7. LIN Q B, CAO P, MENG J J, CAO R H, ZHAO Z Y. Strength and failure characteristics of jointed rock mass with double circular holes under uniaxial compression: Insights from discrete element method modelling [J]. Theoretical and Applied Fracture Mechanics, 2020, 109: 102692. DOI: https://doi.org/10.1016/j.tafmec.2020.102692.

    Article  Google Scholar 

  8. MENG M, CHEN P J, REN R. Statistic evaluation of failure criteria in wellbore stability with temperature effects [J]. Fuel, 2019, 252: 730–752. DOI: https://doi.org/10.1016/j.fuel.2019.04.110.

    Article  Google Scholar 

  9. ZHANG C Y, LIN H, QIU C M, JIANG T T, ZHANG J H. The effect of cross-section shape on deformation, damage and failure of rock-like materials under uniaxial compression from both a macro and micro viewpoint [J]. International Journal of Damage Mechanics, 2020, 20: 1–20. DOI: https://doi.org/10.1177/1056789520904119.

    Google Scholar 

  10. ZHANG C Y, ZOU P, WANG Y X, JIANG T T, LIN H, CAO P. An elasto-visco-plastic model based on stress functions for deformation and damage of water-saturated rocks during the freeze-thaw process [J]. Construction and Building Materials, 2020, 250: 118862. DOI: https://doi.org/10.1016/j.conbuildmat.2020.118862.

    Article  Google Scholar 

  11. LIN H, LEI D X, YONG R, JIANG C, DU S G. Analytical and numerical analysis for frost heaving stress distribution within rock joints under freezing and thawing cycles [J]. Environmental Earth Sciences, 2020, 79: Article number 305. DOI: https://doi.org/10.1007/s12665-020-09051-x.

  12. MEHRANPOUR M H, KULATILAKE P, MA X G, HE M C. Development of new three-dimensional rock mass strength criteria [J]. Rock Mechanics and Rock Engineering, 2018, 51: 3537–3561. DOI: https://doi.org/10.1007/s00603-018-1538-6.

    Article  Google Scholar 

  13. WANG P, QU S X. Analysis of ductile fracture by extended unified strength theory [J]. Int J Plast, 2018, 104: 196–213. DOI: https://doi.org/10.1016/j.ijplas.2018.02.011.

    Article  Google Scholar 

  14. YU M. Advances in strength theories for materials under complex stress state in the 20th Century [J]. Applied Mechanics Reviews, 2002, 55: 169–218.

    Article  Google Scholar 

  15. SHI X C, YANG X, MENG Y F, LI G. Modified Hoek-Brown failure criterion for anisotropic rocks [J]. Environmental Earth Sciences, 2016, 75(11): 995. DOI: https://doi.org/10.1007/s12665-016-5810-3.

    Article  Google Scholar 

  16. da FONTOURA S A B. Lade and modified lade 3D rock strength criteria [J]. Rock Mechanics and Rock Engineering, 2012, 45: 1001–1006. DOI: https://doi.org/10.1007/s00603-012-0279-1.

    Article  Google Scholar 

  17. JIANG H. Three-dimensional failure criteria for rocks based on the hoek-brown criterion and a general lode dependence [J]. Int J Geomech, 2017, 17(8): 04017023. DOI: https://doi.org/10.1061/(asce)gm.1943-5622.0000900.

    Article  Google Scholar 

  18. WU Q, KULATILAKE P. REV and its properties on fracture system and mechanical properties, and an orthotropic constitutive model for a jointed rock mass in a dam site in China [J]. Computers and Geotechnics, 2012, 43: 124–142. DOI: https://doi.org/10.1016/j.compgeo.2012.02.010.

    Article  Google Scholar 

  19. YOU M Q. Comparison of the accuracy of some conventional triaxial strength criteria for intact rock [J]. International Journal of Rock Mechanics and Mining Sciences, 2011, 48: 852–863. DOI: https://doi.org/10.1016/j.ijrmms.2011.05.006.

    Article  Google Scholar 

  20. NASSERI M H B, RAO K S, RAMAMURTHY T. Anisotropic strength and deformational behavior of Himalayan schists [J]. International Journal of Rock Mechanics And Mining Sciences, 2003, 40: 3–23. DOI: https://doi.org/10.1016/s1365-1609(02)00103-x.

    Article  Google Scholar 

  21. SINGH M, SINGH B. A strength criterion based on critical state mechanics for intact rocks [J]. Rock Mechanics and Rock Engineering, 2005, 38: 243–248. DOI: https://doi.org/10.1007/s00603-004-0042-3.

    Article  Google Scholar 

  22. ALEJANO L R, BOBET A. Drucker-Prager Criterion [M]// ULUSAY R. The ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 2007–2014. Cham: Springer International Publishing, 2015: 247–252.

    Google Scholar 

  23. LABUZ J F, ZANG A. Mohr-coulomb failure criterion [J]. Rock Mechanics and Rock Engineering, 2012, 45: 975–979. DOI: https://doi.org/10.1007/s00603-012-0281-7.

    Article  Google Scholar 

  24. HOEK E, BROWN E T. Practical estimates of rock mass strength [J]. International Journal of Rock Mechanics and Mining Sciences, 1997, 34: 1165–1186. DOI: https://doi.org/10.1016/S1365-1609(97)80069-X.

    Article  Google Scholar 

  25. RAMAMURTHY T, ARORA V K. Strength predictions for jointed rocks in confined and unconfined states [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1994, 31: 9–22. DOI: https://doi.org/10.1016/0148-9062(94)92311-6.

    Article  Google Scholar 

  26. LI X L, LI Q, YANG C, LI J. A nonlinear failure strength criterion for rocks based on the peak value of deviatoric stress from triaxial test [J]. Journal of China Coal Society, 2019, 44: 1–10. DOI: https://doi.org/10.13225/j.cnki.jccs.2019.0390.

    Google Scholar 

  27. COMANICI A M, BARSANESCU P D. Modification of Mohr’s criterion in order to consider the effect of the intermediate principal stress [J]. Int J Plast, 2018, 108: 40–54. DOI: https://doi.org/10.1016/j.ijplas.2018.04.010.

    Article  Google Scholar 

  28. KOLUPAEV A V. Equivalent stress concept for limit state analysis [M]// Advanced Structured Materials. Volume 86: Multi-surface criteria. Springer, 2018. DOI: 2018. https://doi.org/10.1007/978-3-319-73049-3:223-56.

  29. BENZ T, SCHWAB R. A quantitative comparison of six rock failure criteria [J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45: 1176–1186. DOI: https://doi.org/10.1016/j.ijrmms.2008.01.007.

    Article  Google Scholar 

  30. GAO F, YANG Y G, CHENG H M, CAI C Z. Novel 3D failure criterion for rock materials [J]. Int J Geomech, 2019, 19(6): 04019046. DOI: https://doi.org/10.1061/(asce)gm.1943-5622.0001421.

    Article  Google Scholar 

  31. LI K H, CHENG Y M, YIN Z Y, HAN D Y, MENG J J. Size effects in a transversely isotropic rock under brazilian tests: Laboratory testing [J]. Rock Mech Rock Eng, 2020, 53(6): 2623–2642. DOI: https://doi.org/10.1007/s00603-020-02058-7.

    Article  Google Scholar 

  32. WANG D J, TANG H M, SHEN P W, CAI Y. A parabolic failure criterion for transversely isotropic rock: Modification and verification [J]. Mathematical Problems in Engineering, 2019, 2019: 1–12. DOI: https://doi.org/10.1155/2019/8052560.

    Google Scholar 

  33. YAO Meng-di. Experimental study on mechanical properties and crack propagation of thermal damaged rock [D]. Wuhan: Wuhan University, 2017. (in Chinese)

    Google Scholar 

  34. LI D Y, HAN Z Y, SUN X L, ZHOU T, LI X B. Dynamic mechanical properties and fracturing behavior of marble specimens containing single and double flaws in SHPB tests [J]. Rock Mechanics and Rock Engineering, 2019, 52: 1623–1643. DOI: https://doi.org/10.1007/s00603-018-1652-5.

    Article  Google Scholar 

  35. LABUZ J F, ZENG F T, MAKHNENKO R, LI Y. Brittle failure of rock: A review and general linear criterion [J]. Journal of Structural Geology, 2018, 112: 7–28. DOI: https://doi.org/10.1016/j.jsg.2018.04.007.

    Article  Google Scholar 

  36. MOGI K. Experimental rock mechanics [M]. London, UK: CRC Press, 2006.

    Book  Google Scholar 

  37. YOU M. Three independent parameters to describe conventional triaxial compressive strength of intact rocks [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2010, 2: 350–356. DOI: https://doi.org/10.3724/SP.J.1235.2010.00350.

    Google Scholar 

  38. von KARMAN T. Festigkeitsversuche unter allseitigem druck [J]. Zeitschr ver Deutseh Ingenieure, 1911(55): 1749–1757. (in German)

  39. OUYANG Z, ELSWORTH D. A phenomenological failure criterion for brittle rock [J]. Rock Mechanics and Rock Engineering, 1991, 24: 133–153.

    Article  Google Scholar 

  40. COLMENARES L B, ZOBACK M D. A statistical evaluation of intact rock failure criteria constrained by polyaxial test data for five different rocks [J]. International Journal of Rock Mechanics and Mining Sciences, 2002, 39: 695–729. DOI: https://doi.org/10.1016/s1365-1609(02)00048-5.

    Article  Google Scholar 

  41. YOU M. Mechanical characteristics of the exponential strength criterion under conventional triaxial stresses [J]. International Journal of Rock Mechanics and Mining Sciences, 2010, 47: 195–204. DOI: https://doi.org/10.1016/j.ijrmms.2009.12.006.

    Article  Google Scholar 

  42. BESUELLE P, DESRUES J, RAYNAUD S. Experimental characterisation of the localisation phenomenon inside a Vosges sandstone in a triaxial cell [J]. International Journal of Rock Mechanics and Mining Sciences, 2000, 37: 1223–1237. DOI: https://doi.org/10.1016/s1365-1609(00)00057-5.

    Article  Google Scholar 

  43. GOWD T N, RUMMEL F. Effect of confining pressure on the fracture behaviour of a porous rock [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1980, 17: 225–229. DOI: https://doi.org/10.1016/0148-9062(80)91089-X.

    Article  Google Scholar 

  44. HOEK E. Strength of jointed rock masses [J]. Géotechnique, 1983, 33: 187–223. DOI: https://doi.org/10.1680/geot.1983.33.3.187.

    Article  Google Scholar 

  45. LI B, WANG D G. Negative power rock strength criterion under conventional triaxial compression [J]. Coal Geology & Exploration, 2020, 48(2): 1–9.

    Google Scholar 

  46. SINGH M, RAJ A, SINGH B. Modified Mohr-Coulomb criterion for non-linear triaxial and polyaxial strength of intact rocks [J]. International Journal of Rock Mechanics and Mining Sciences, 2011, 48: 546–555. DOI: https://doi.org/10.1016/j.ijrmms.2011.02.004.

    Article  Google Scholar 

  47. SHEN J Y, JIMENEZ R, KARAKUS M, XU C S. A simplified failure criterion for intact rocks based on rock type and uniaxial compressive strength [J]. Rock Mechanics and Rock Engineering, 2014, 47: 357–369. DOI: https://doi.org/10.1007/s00603-013-0408-5.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hang Lin  (林杭).

Additional information

Foundation item

Project(51774322) supported by the National Natural Science Foundation of China; Project(2018JJ2500) supported by Natural Science Foundation of Hunan Province, China; Project(2020JGB135) supported by Degree and Postgraduate Education Reform Project of Central South University, China; Project(2018zzts209) supported by the Fundamental Research Funds for the Central Universities, China

Contributors

The overarching research goals were developed by LIN Hang and XIE Shi-jie, CHEN Yi-fan provided the experiment data, and analyzed the experiment data, WANG Yi-xian analyzed the calculated results. The initial draft of the manuscript was written by XIE Shi-jie and CHEN Yi-fan. All authors replied to reviewers’ comments and revised the final version.

Data availability statement

Some or all data, models, or codes that support the findings of this study are available from the corresponding author upon reasonable request.

Conflict of interest

All the authors state that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, Sj., Lin, H., Chen, Yf. et al. A new nonlinear empirical strength criterion for rocks under conventional triaxial compression. J. Cent. South Univ. 28, 1448–1458 (2021). https://doi.org/10.1007/s11771-021-4708-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-021-4708-8

Key words

关键词

Navigation