Skip to main content
Log in

Crack evolution behavior of rocks under confining pressures and its propagation model before peak stress

围压作用下岩石峰前裂纹演化行为及其扩展模型

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The understanding of crack propagation characteristics and law of rocks during the loading process is of great significance for the exploitation and support of rock engineering. In this study, the crack propagation behavior of rocks in triaxial compression tests was investigated in detail. The main conclusions were as follows: 1) According to the evolution characteristics of crack axial strain, the differential stress-strain curve of rocks under triaxial compressive condition can be divided into three phases which are linear elastic phase, crack propagation phase, post peak phase, respectively; 2) The proposed models are applied to comparison with the test data of rocks under triaxial compressive condition and different temperatures. The theoretical data calculated by the models are in good agreement with the laboratory data, indicating that the proposed model can be applied to describing the crack propagation behavior and the nonlinear properties of rocks under triaxial compressive condition; 3) The inelastic compliance and crack initiation strain in the proposed model have a decrease trend with the increase of confining pressure and temperature. Peak crack axial strain increases nonlinearly with the inelastic compliance and the increase rate increases gradually. Crack initiation strain has a linear relation with peak crack axial strain.

摘要

理解岩石在加载过程中的裂纹演化特征及规律对于岩体工程开挖与支护具有重要意义. 本文详 细地研究了围压作用下岩石的裂纹扩展行为, 主要结论如下: 1)依据裂纹轴向应变的演化特征, 围 压作用下岩石的差应力-应变曲线可以分为三个阶段, 分别为线弹性阶段、裂纹扩展阶段及峰后阶段; 2)建立围压作用下岩石的裂纹扩展模型, 并进行了验证, 发现通过理论模型计算得出的理论数据与试 验数据吻合度较高, 验证了裂纹扩展模型可以被用来描述围压作用下岩石的非线性裂纹扩展行为; 3) 裂纹扩展模型中岩石裂纹非弹性柔度和裂纹起裂应变随着围压的增大和温度的升高呈减小趋势. 峰值 裂纹轴向应变随着非弹性柔度的增大呈非线性增大趋势, 其增大速率逐渐降低, 而裂纹起裂应变与峰 值裂纹轴向应变呈线性关系.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ZUO Jian-ping, PENG Su-ping, LI Yong-jun, CHEN Zhong-hui, XIE He-ping. Investigation of karst collapse based on 3-D seismic technique and DDA method at Xieqiao coal mine, China [J]. International Journal of Coal Geology, 2009, 78(4): 276–287. DOI: https://doi.org/10.1016/j.coal.2009.02.003.

    Article  Google Scholar 

  2. HE Xue-qiu, SONG Liang. Status and future tasks of coal mining safety in China [J]. Safety Science, 2012, 50(4): 894–898. DOI: https://doi.org/10.1016/j.ssci.2011.08.012.

    Article  Google Scholar 

  3. XIE He-ping, GAO Feng, JU Yang. Research and development of rock mechanics in deep ground engineering [J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(11): 2161–2178. DOI: https://doi.org/10.13722/j.cnki.jrme.2015.1369. (in Chinese)

    Google Scholar 

  4. SHREEDHARAN S, KULATILAKE P H S W. Discontinuum-equivalent continuum analysis of the stability of tunnels in a deep coal mine using the distinct element method [J]. Rock Mechanics and Rock Engineering, 2016, 49(5): 1903–1922. DOI: https://doi.org/10.1007/s00603-015-0885-9.

    Article  Google Scholar 

  5. ZHOU X P, BI J, QIAN Q. Numerical simulation of crack growth and coalescence in rock-like materials containing multiple pre-existing flaws [J]. Rock Mechanics and Rock Engineering, 2015, 48(3): 1097–1114. DOI: https://doi.org/10.1007/s00603-014-0627-4.

    Article  Google Scholar 

  6. ZHOU X P, CHENG H, FENG Y F. An experimental study of crack coalescence behaviour in rock-like materials containing multiple flaws under uniaxial compression [J]. Rock Mechanics and Rock Engineering, 2014, 47(6): 1961–1986. DOI: https://doi.org/10.1007/s00603-013-0511-7.

    Article  Google Scholar 

  7. GOODMAN R E. Introduction to rock mechanics [M]. New York: John Wiley & Sons, 1989.

    Google Scholar 

  8. PATERSON M S, WONG T F. Experimental rock deformation—The brittle filed [M]. New York: Springer Berlin Heidelberg, 2004. DOI: https://doi.org/10.1007/b137431.

    Google Scholar 

  9. MOGI K. Experimental rock mechanics [M]. London: Taylor & Francis Group, 2007.

    Book  Google Scholar 

  10. JAEGER J C, COOK N G W, ZIMMERMAN R W. Fundamentals of rock mechanics [M]. Oxford: Blackwell, 2007.

    Google Scholar 

  11. YANG Sheng-qi, RANJITH P G, JING Hong-wen, TIAN Wen-ling, JU Yang. An experimental investigation on thermal damage and failure mechanical behavior of granite after exposure to different high temperature treatments[J]. Geothermics, 2017, 65: 180–197. DOI: https://doi.org/10.1016/j.geothermics.2016.09.008.

    Article  Google Scholar 

  12. BOBET A. The initiation of secondary cracks in compression [J]. Engineering Fracture Mechanics, 2000, 66: 187–219. DOI: https://doi.org/10.1016/S0013-7944(00)00009-6.

    Article  Google Scholar 

  13. LI Ying-ping, CHEN Long-zhu, WANG Yuan-han. Experimental research on pre-cracked marble under compression [J]. International Journal of Solids and Structures, 2005, 42(9): 2505–2516. DOI: https://doi.org/10.1016/j.ijsolstr.2004.09.033.

    Article  Google Scholar 

  14. WONG L N Y, EINSTEIN H H. Crack coalescence in molded gypsum and carrara marble: Part 1. Macroscopic observations and interpretation [J]. Rock Mechanics and Rock Engineering, 2009, 42(3): 475–511. DOI: https://doi.org/10.1007/s00603-008-0002-4.

    Article  Google Scholar 

  15. YANG Sheng-qi, JING Hong-wen. Strength failure and crack coalescence behavior of brittle sandstone samples containing a single fissure under uniaxial compression [J]. International Journal of Fracture, 2011, 168(2): 227–250. DOI: https://doi.org/10.1007/s10704-010-9576-4.

    Article  Google Scholar 

  16. ZHOU X P, YANG H Q. Micromechanical modeling of dynamic compressive responses of mesoscopic heterogenous brittle rock [J]. Theoretical & Applied Fracture Mechanics, 2007, 48(1): 1–20. DOI: https://doi.org/10.1016/j.tafmec.2007.04.008.

    Article  MathSciNet  Google Scholar 

  17. ZHOU X P, ZHANG Y X, HA Q L, ZHU K S. Micromechanical modelling of the complete stress-strain relationship for crack weakened rock subjected to compressive loading [J]. Rock Mechanics and Rock Engineering, 2008, 41(5): 747–769. DOI: https://doi.org/10.1007/s00603-007-0130-2.

    Article  Google Scholar 

  18. ZUO Jian-ping, WANG Xi-shu, MAO De-qiao. SEM in-situ study on the effect of offset-notch on basalt cracking behavior under three-point bending load [J]. Engineering Fracture Mechanics, 2014, 131: 504–513. DOI: https://doi.org/10.1016/j.engfracmech.2014.09.006.

    Article  Google Scholar 

  19. CHANG S H, LEE C I. Estimation of cracking and damage mechanisms in rock under triaxial compression by moment tensor analysis of acoustic emission [J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(7): 1069–1086. DOI: https://doi.org/10.1016/j.ijrmms.2004.04.006.

    Article  Google Scholar 

  20. YANG Sheng-qi, JING Hong-wen, WANG Shan-yong. Experimental investigation on the strength, deformability, failure behavior and acoustic emission locations of red sandstone under triaxial compression [J]. Rock Mechanics and Rock Engineering, 2012, 45(4): 583–606. DOI: https://doi.org/10.1007/s00603-011-0208-8.

    Article  Google Scholar 

  21. ZHOU X P, ZHANG Y X, HA Q L. Real-time computerized tomography (CT) experiments on limestone damage evolution during unloading[J]. Theoretical and Applied Fracture Mechanics, 2008, 50(1): 49–56. DOI: https://doi.org/10.1016/j.tafmec.2008.04.005.

    Article  Google Scholar 

  22. KLING T, HUO D, SCHWARZ J, ENZMANN F, BENSON M S, BLUM P. Simulating stress-dependent fluid flow in a fractured core sample using real-time X-ray CT data [J]. Solid Earth, 2016, 7(4): 1109–1124. DOI: https://doi.org/10.5194/se-7-1109-2016.

    Article  Google Scholar 

  23. DEWANCKELE J, KOCK D T, BOONE M, CNUDDE V, BRABANT L, BOONE M, FRONTEAU G, van HOOREBEKE L, JACOBS P. 4D imaging and quantification of pore structure modifications inside natural building stones by means of high resolution X-ray CT [J]. Science of The Total Environment, 2012, 416: 436–448. DOI: https://doi.org/10.1016/j.scitotenv.2011.11.018.

    Article  Google Scholar 

  24. MOGI K. Effect of the intermediate principal stress on rock failure [J]. Journal of Geophysical Research, 1967, 72(20): 5117–5131. DOI: https://doi.org/10.1029/JZ072i020p05117.

    Article  Google Scholar 

  25. HOEK E, BROWN E T. Underground excavations in rock [M]. London: Institution of Mining and Metallurgy, 1980.

    Google Scholar 

  26. YOU Ming-qing. Mechanical characteristics of the exponential strength criterion under conventional triaxial stresses [J]. International Journal of Rock Mechanics and Mining Sciences, 2010, 47(2): 195–204. DOI: https://doi.org/10.1016/j.ijrmms.2009.12.006.

    Article  Google Scholar 

  27. ZHOU Xiao-ping, SHOU Yun-dong, QIAN Qi-hu, YU Mao-hong. Three-dimensional nonlinear strength criterion for rock-like materials based on the micromechanical method [J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 72: 54–60. DOI: https://doi.org/10.1016/j.ijrmms.2014.08.013.

    Article  Google Scholar 

  28. ZUO Jian-ping, LI Hong-tao, XIE He-ping, JU Yang, PENG Su-ping. A nonlinear strength criterion for rock-like materials based on fracture mechanics [J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(4): 594–599. DOI: https://doi.org/10.1016/j.ijrmms.2007.05.010.

    Article  Google Scholar 

  29. WEI Z Q, HUDSON J A. The influence of joints on rock modulus [C]// Proceedings of the International Symposium on Rock Engineering in Complex Rock Formations. Beijing, China: Science Press, 1988: 54–62. DOI: https://doi.org/10.1016/B978-0-08-035894-9.50010-X.

    Chapter  Google Scholar 

  30. GATES D J. A microscopic model for stress-strain relations in rock—Part II. Triaxial compressive stress [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1988, 25(6): 403–410. DOI: https://doi.org/10.1016/0148-9062(88)90980-1.

    Article  Google Scholar 

  31. WU Fa-quan, WANG Si-jing. A stress-strain relation for jointed rock masses [J]. International Journal of Rock Mechanics and Mining Sciences, 2001, 38(4): 591–598. DOI: https://doi.org/10.1016/S1365-1609(01)00027-2.

    Article  Google Scholar 

  32. ZHAO Heng, SHI Cai-jun, ZHAO Ming-hua, LI Xi-bing. Statistical damage constitutive model for rocks considering residual strength [J]. International Journal of Geomechanics, 2016, 17(1): 04016033. DOI: https://doi.org/10.1061/(ASCE)GM.1943-5622.0000680.

    Article  Google Scholar 

  33. HU Bo, YANG Sheng-qi, XU Peng. A nonlinear rheological damage model of hard rock [J]. Journal of Central South University, 2018, 25(7): 1665–1677. DOI: https://doi.org/10.1007/s11771-018-3858-9.

    Article  Google Scholar 

  34. XU Xiao-li, KARAKUS M, GAO F, ZHANG Zhi-zhen. Thermal damage constitutive model for rock considering damage threshold and residual strength [J]. Journal of Central South University, 2018, 25(10): 2523–2536. DOI: https://doi.org/10.1007/s11771-018-3933-2.

    Article  Google Scholar 

  35. ZUO Jian-ping, CHEN Yan, SONG Hong-qiang, WEI Xu. Evolution of pre-peak axial crack strain and nonlinear model for coal-rock combined body [J]. Chinese Journal Geotechnical Engineering, 2017, 39(9): 1609–1615. DOI: https://doi.org/10.11779/CJGE201709008. (in Chinese)

    Google Scholar 

  36. MARTIN C D, CHANDLER N A. The progressive fracture of Lac du Bonnet granite [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1994, 31(6): 643–659. DOI: https://doi.org/10.1016/0148-9062(94)90005-1.15939116274519228989.

    Article  Google Scholar 

  37. MARTIN C D. The strength of massive lac du bonnet granite around underground openings [D]. University of Manitoba, 1993.

  38. PENG Jun, RONG Guan, CAI Ming, ZHOU Chuang-bing. A model for characterizing crack closure effect of rocks [J]. Engineering Geology, 2015, 189: 48–57. DOI: https://doi.org/10.1016/j.enggeo.2015.02.004.

    Article  Google Scholar 

  39. TKALICH D, FOURMEAU M, KANE A, LI C C, CAILLETAUD G. Experimental and numerical study of Kuru granite under confined compression and indentation [J]. International Journal of Rock Mechanics and Mining Sciences, 2016, 87: 55–68. DOI: https://doi.org/10.1016/j.ijrmms.2016.05.012.

    Article  Google Scholar 

  40. CHEN Yi-feng, WEI Kai, LIU Wu, HU Shao-hua, HU Ran, ZHOU Chuang-bing. Experimental characterization and micromechanical modelling of anisotropic slates [J]. Rock Mechanics and Rock Engineering, 2016, 49(9): 3541–3557. DOI: https://doi.org/10.1007/s00603-016-1009-x.

    Article  Google Scholar 

  41. ZHOU Hong-wei, XIE He-ping, ZUO Jian-ping, DU Sheng-hao, MAN Ke, YAN Chun-ye. Experimental study of the effect of depth on mechanical parameters of rock [J]. Chinese Science Bulletin, 2010, 55: 3276–3284. DOI: https://doi.org/10.1360/972010-786. (in Chinese)

    Article  Google Scholar 

  42. MASRI M, SIBAI M, SHAO J F, MAINGUY M. Experimental investigation of the effect of temperature on the mechanical behavior of Tournemire shale [J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 70(9): 185–191. DOI: https://doi.org/10.1016/j.ijrmms.2014.05.007.

    Article  Google Scholar 

  43. BUDIANSKY B, O’CONNELL R J, BUDIANSKY B, O’CONNELL R J. Elastic moduli of a cracked solid [J]. International Journal of Solids and Structures, 1976, 12(2): 81–97. DOI: https://doi.org/10.1016/0020-7683(76)90044-5.

    Article  MATH  Google Scholar 

  44. FENG Xi-qiao, YU Shou-wen. A new damage model for microcrack-weakened brittle solids [J]. Acta Mechanica Sinica, 1993, 9(3): 251–260. DOI: https://doi.org/10.1007/BF02486802.

    Article  MATH  Google Scholar 

  45. LIU H H, RUTQVIST J, BERRYMAN J G. On the relationship between stress and elastic strain for porous and fractured rock [J]. International Journal of Rock Mechanics and Mining Sciences, 2009, 46(2): 289–296. DOI: https://doi.org/10.1016/j.ijrmms.2008.04.005.

    Article  Google Scholar 

  46. HENCKY H. The law of elasticity for isotropic and quasi-isotropic substances by finite deformations [J]. Journal of Rheology, 1931, 2(2): 169–176. DOI: https://doi.org/10.1122/1.2116361.

    Article  Google Scholar 

  47. FREED A D. Natural strain [J]. Journal of Engineering Materials & Technology, 1995, 117(4): 379–385. DOI: https://doi.org/10.1115/1.2804729.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Chen  (陈岩).

Additional information

Foundation item: Project(51622404) supported by Outstanding Youth Science Foundation of the National Natural Science Foundation of China; Projects(51374215, 11572343, 51904092) supported by the National Natural Science Foundation of China; Project(2016YFC0801404) supported by the State Key Research Development Program of China; Project(KCF201803) supported by Henan Key Laboratory for Green and Efficient Mining & Comprehensive Utilization of Mineral Resources, Henan Polytechnic University, China; Project supported by Beijing Excellent Young Scientists, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuo, Jp., Chen, Y. & Liu, Xl. Crack evolution behavior of rocks under confining pressures and its propagation model before peak stress. J. Cent. South Univ. 26, 3045–3056 (2019). https://doi.org/10.1007/s11771-019-4235-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-019-4235-z

Key words

关键词

Navigation