Skip to main content
Log in

Adaptive distributed formation maintenance for multiple UAVs: Exploiting proximity behavior observations

基于邻近行为观测方法的多无人机分布式自适应编队控制

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The formation maintenance of multiple unmanned aerial vehicles (UAVs) based on proximity behavior is explored in this study. Individual decision-making is conducted according to the expected UAV formation structure and the position, velocity, and attitude information of other UAVs in the azimuth area. This resolves problems wherein nodes are necessarily strongly connected and communication is strictly consistent under the traditional distributed formation control method. An adaptive distributed formation flight strategy is established for multiple UAVs by exploiting proximity behavior observations, which remedies the poor flexibility in distributed formation. This technique ensures consistent position and attitude among UAVs. In the proposed method, the azimuth area relative to the UAV itself is established to capture the state information of proximal UAVs. The dependency degree factor is introduced to state update equation based on proximity behavior. Finally, the formation position, speed, and attitude errors are used to form an adaptive dynamic adjustment strategy. Simulations are conducted to demonstrate the effectiveness and robustness of the theoretical results, thus validating the effectiveness of the proposed method.

摘要

本文研究了基于邻近行为信息状态反馈的多无人机编队队形集结与保持问题。无人机个体根据期望的编队结构以及邻居无人机所在方位角区域的位置、速度和姿态信息进行自主决策, 解决了传统分布式编队控制方法中通信拓扑强连通问题和多维度状态信息耦合问题。针对现有分布式编队控制算法中多无人机编队机动灵活性差的问题, 以邻近无人机行为信息为观测量建立了一种自适应的分布式编队保持模型。通过已建立的相对方位角区域来获取邻近无人机的状态信息, 确保编队中无人机之间位置、速度和姿态的一致性。另外, 在邻近行为的状态更新方程中引入关联度因子, 利用编队间的位置、速度和姿态误差构成自适应动态调整策略。仿真结果验证了本文所提方法的有效性和鲁棒性。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. HE Lü-long, BAI Peng, LIANG Xiao-long, ZHANG Jia-qiang, WANG Wei-jia. Feedback formation control of UAV swarm with multiple implicit leaders [J]. Aerospace Science and Technology, 2018, 72: 327–334. DOI: https://doi.org/10.1016/j.ast.2017.11.020.

    Article  Google Scholar 

  2. YAN Zhe-ping, LIU Yi-bo, YU Chang-bin, ZHOU Jia-jia. Leader-following coordination of multiple UAVs formation under two independent topologies and time-varying delays [J]. Journal of Central South University, 2017, 24(2): 382–393. DOI: https://doi.org/10.1007/s11771-017-3440-x.

    Article  Google Scholar 

  3. WANG Jian-feng, JIA Gao-wei, LIN Jun-can, HOU Zhong-xi. Cooperative task allocation for heterogeneous multi-UAV using multi-objective optimization algorithm [J]. Journal of Central South University, 2020, 27(2): 432–448. DOI: https://doi.org/10.1007/s11771-020-4307-0.

    Article  Google Scholar 

  4. SCHWARZROCK J, ZACARIAS I, BAZZAN A L C, de ARAUJO F R Q, MOREIRA L H, de FREITAS E P. Solving task allocation problem in multi Unmanned Aerial Vehicles systems using Swarm intelligence [J]. Engineering Applications of Artificial Intelligence, 2018, 72: 10–20. DOI: https://doi.org/10.1016/j.engappai.2018.03.008.

    Article  Google Scholar 

  5. ROBERGE V, TARBOUCHI M, LABONTE G. Comparison of parallel genetic algorithm and particle swarm optimization for real-time UAV path planning [J]. IEEE Transactions on Industrial Informatics, 2013, 9(1): 132–141. DOI: https://doi.org/10.1109/TII.2012.2198665.

    Article  Google Scholar 

  6. KURIKI Y, NAMERIKAWA T. Consensus-based cooperative formation control with collision avoidance for a multi-UAV system [C]//2014 American Control Conference. Piscataway, NJ, USA: NUMGE, 2014: 2077–2082.

    Chapter  Google Scholar 

  7. WANG Jin-liang, WU Huai-ning, Leader-following formation control of multi-agent systems under fixed and switching topologies [J]. International Journal of Control, 2012, 85(6): 695–705. DOI: https://doi.org/10.1080/00207179.2012.662720.

    Article  MathSciNet  Google Scholar 

  8. OH Kwang-kyo, AHN Hyo-sung. Leader-follower type distance-based formation control of a group of autonomous agents [J]. International Journal of Control Automation and Systems, 2017, 15(4): 1738–1745. DOI: https://doi.org/10.1007/s12555-016-0347-5.

    Article  Google Scholar 

  9. DONG Xi-wang, HUA Yong-zhao, ZHOU Yan, REN Zhang, ZHONG Yi-sheng. Theory and experiment on formationcontainment control of multiple multirotor unmanned aerial vehicle systems [J]. IEEE Transactions on Automation Science and Engineering, 2019, 16(1): 229–240. DOI: https://doi.org/10.1109/tase.2018.2792327.

    Article  Google Scholar 

  10. ASKARI A, MORTAZAVI M, TELEBI H A. UAV Formation control via the virtual structure approach [J]. Journal of Aerospace Engineering, 2015, 28(1): 04014047. DOI: https://doi.org/10.1061/(asce)as.1943-5525.0000351.

    Article  Google Scholar 

  11. HAN Tao, GUAN Zhi-hong, CHI Ming, HU Bing, LI Tao, ZHANG Xian-he. Multi-formation control of nonlinear leader-following multi-agent systems [J]. ISA Transactions, 2017, 69: 140–147. DOI: https://doi.org/10.1016/j.isatra.2017.05.003.

    Article  Google Scholar 

  12. KURIKI Y, NAMERIKAWA T. Formation control with collision avoidance for a multi-UAV system using decentralized MPC and consensus-based control [C]//2015 European Control Conference. Piscataway, NJ, USA: NUMGE, 2015: 3079–3084.

    Chapter  Google Scholar 

  13. REN Wei, BEARD W, ATKIWS E M. Information consensus in multivehicle cooperative control [J]. IEEE Control Systems Magazine, 2007, 27(2): 71–82. DOI: https://doi.org/10.1109/MCS.2007.338264.

    Article  Google Scholar 

  14. REN Wei. Formation keeping and attitude alignment for multiple spacecraft through local interactions [J]. Journal of Guidance, Control, and Dynamics, 2007, 30(2): 633–638. DOI: https://doi.org/10.2514/1.25629.

    Article  Google Scholar 

  15. ZHU Xu, ZHANG Xun-xun, YAN Mao-de, QU Yan-hong. Three-dimensional formation keeping of multi-UAV based on consensus [J]. Journal of Central South University, 2017, 24(6): 1387–1395. DOI: https://doi.org/10.1007/s11771-017-3543-4.

    Article  Google Scholar 

  16. DUAN Hai-bin, QIU Hua-xin. Advancements in pigeon-inspired optimization and its variants [J]. Science China-Information Sciences, 2019, 62(7): 10. DOI: https://doi.org/10.1007/s11432-018-9752-9.

    Article  MathSciNet  Google Scholar 

  17. LWOWSKI J, MAJUMDAR A, BENAVIDEZ P, PREVOST J J, JAMSHIDI M. Bird flocking inspired formation control for unmanned aerial vehicles using stereo camera [J]. IEEE Systems Journal, 2019, 13(3): 3580–3589. DOI: https://doi.org/10.1109/JSYST.2018.2884051.

    Article  Google Scholar 

  18. ZHOU Zi-wei, DUAN Hai-bin, FAN Yan-ming. Unmanned aerial vehicle close formation control based on the behavior mechanism in wild geese [J]. Scientia Sinica Technologica, 2017, 47(3): 230–238. DOI: https://doi.org/10.1360/n006-00138.

    Article  Google Scholar 

  19. DUAN Hai-bin, LUO Qi-nan, SHI Yu-hui, MA Guan-jun. Hybrid particle swarm optimization and genetic algorithm for multi-UAV formation reconfiguration [J]. IEEE Computational Intelligence Magazine, 2013, 8(3): 16–27. DOI: https://doi.org/10.1109/MCI.2013.2264577.

    Article  Google Scholar 

  20. QIU Hua-xin, DUAN Hai-bin. Receding horizon control for multiple UAV formation flight based on modified brain storm optimization [J]. Nonlinear Dynamics, 2014, 78(3): 1973–1988. DOI: https://doi.org/10.1007/s11071-014-1579-7.

    Article  Google Scholar 

  21. PENG Zhao-xia, WEN Guo-guang, YANG Shi-chun, RANMANI A. Distributed consensus-based formation control for nonholonomic wheeled mobile robots using adaptive neural network [J]. Nonlinear Dynamics, 2016, 86(1): 605–622. DOI: https://doi.org/10.1007/s11071-016-2910-2.

    Article  MathSciNet  Google Scholar 

  22. LEE H, EOM S, PARK J, LEE I. UAV-aided secure communications with cooperative jamming [J]. IEEE Transactions on Vehicular Technology, 2018, 67(10): 9385–9392. DOI: https://doi.org/10.1109/tvt.2018.2853723.

    Article  Google Scholar 

  23. CHEN Xi, CHEN Zhi-yong, MEI Cheng-cai. Sampled measurement output feedback control of multi-agent systems with jointly-connected topologies [J]. IEEE Transactions on Automatic Control, 2016, 61(6): 1670–1675. DOI: https://doi.org/10.1109/TAC.2015.2479113.

    Article  MathSciNet  Google Scholar 

  24. ZHAO Yu, LIU Yong-fang, WEN Guang-hui, REN Wei, CHEN Guan-rong. Designing distributed specified-time consensus protocols for linear multiagent systems over directed graphs [J]. IEEE Transactions on Automatic Control, 2019, 64(7): 2945–2952. DOI: https://doi.org/10.1109/TAC.2018.2872534.

    Article  MathSciNet  Google Scholar 

  25. WANG Peng, DING Bao-cang. Distributed RHC for tracking and formation of nonholonomic multi-vehicle systems [J]. IEEE Transactions on Automatic Control, 2014, 59(6): 1439–1453. DOI: https://doi.org/10.1109/tac.2014.2304175.

    Article  MathSciNet  Google Scholar 

  26. DUNBAR W B, MURRAY R M. Distributed receding horizon control for multi-vehicle formation stabilization [J]. Automatica, 2006, 42(4): 549–558. DOI: https://doi.org/10.1016/j.automatica.2005.12.008.

    Article  MathSciNet  Google Scholar 

  27. HARIKUMAR K, DHALL S, BHAT S. Design and experimental validation of a robust output feedback control for the coupled dynamics of a micro air vehicle [J]. International Journal of Control Automation and Systems, 2019, 17(1): 155–167. DOI: https://doi.org/10.1007/s12555-017-0799-2.

    Article  Google Scholar 

  28. GADEWADIKAR J, LEWIS F, SUBBARAO K, CHEN B M. Attitude control system design for unmanned aerial vehicles using H-infinity and loop-shaping methods [C]//2007 IEEE International Conference on Control and Automation. 2007: 1174–1179.

  29. SEO J, KIM Y, KIM S, TSOURDOS A. Collision avoidance strategies for unmanned aerial vehicles in formation flight [J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(6): 2718–2734. DOI: https://doi.org/10.1109/TAES.2017.2714898.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-heng Liu  (刘惟恒).

Additional information

Contributors

LIU Wei-heng and ZHENG Xin provided the concept and established the models. LIU Wei-heng and DENG Zhi-hong conducted the literature review and performed the theoretical analysis. LIU Wei-heng carried out data acquisition and manuscript editing. ZHENG Xin and DENG Zhi-hong performed manuscript review. All authors have read and approved the content of the manuscript.

Conflict of interest

LIU Wei-heng, ZHENG Xin and DENG Zhi-hong declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Wh., Zheng, X. & Deng, Zh. Adaptive distributed formation maintenance for multiple UAVs: Exploiting proximity behavior observations. J. Cent. South Univ. 28, 784–795 (2021). https://doi.org/10.1007/s11771-021-4645-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-021-4645-6

Key words

关键词

Navigation