Skip to main content
Log in

Numerical analysis of deformation and failure characteristics of deep roadway surrounding rock under static-dynamic coupling stress

动静载叠加作用下深部巷道围岩变形破坏数值模拟研究

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

In actual production, deep coal mine roadways are often under typical static-dynamic coupling stress (SDCS) conditions with high ground stress and strong dynamic disturbances. With the increasing number of disasters and accidents induced by SDCS conditions, the safe and efficient production of coal mines is seriously threatened. Therefore, it is of great practical significance to study the deformation and failure characteristics of the roadway surrounding rock under SDCS. In this paper, the effects of different in-situ stress fields and dynamic load conditions on the surrounding rock are studied by numerical simulations, and the deformation and failure characteristics are obtained. According to the simulation results, the horizontal stress, vertical stress and dynamic disturbance have a positive correlation with the plastic failure of the surrounding rock. Among these factors, the influence of the dynamic disturbance is the most substantial. Under the same stress conditions, the extents of deformation and plastic failure of the roof and ribs are always greater than those of the floor. The effect of horizontal stresses on the roadway deformation is more notable than that of vertical stresses. The results indicate that for the roadway under high-stress conditions, the in-situ stress test must be strengthened first. After determining the magnitude of the in-situ stress, the location of the roadway should be reasonably arranged in the design to optimize the mining sequence. For roadways that are strongly disturbed by dynamic loads, rock supports (rebar/cable bolts, steel set etc.) that are capable of maintaining their effectiveness without failure after certain dynamic loads are required. The results of this study contribute to understanding the characteristics of the roadway deformation and failure under SDCS, and can be used to provide a basis for the support design and optimization under similar geological and geotechnical circumstances.

摘要

在深部煤矿开采中, 巷道往往处于高地应力和强动力扰动的动静载叠加应力环境. 由动静载叠加诱发的围岩严重变形破坏甚至灾变失稳现象屡见不鲜, 严重威胁煤矿的安全高效开采. 因此, 对动静载叠加作用下巷道围岩变形破坏规律的研究具有非常重要的理论价值和工程意义. 本文以数值模拟中非线性动力计算为手段, 研究了不同初始应力场及不同动载条件对巷道围岩的影响, 获得了动静载叠加作用下巷道围岩变形破坏规律. 结果表明: 水平应力、 垂直应力及动力扰动都与巷道围岩塑性破坏呈正相关关系, 其中动力扰动对其影响最为明显. 在相同应力条件下, 巷道顶板和两帮的变形量及塑性破坏范围始终大于底板. 水平应力对巷道变形量的影响比垂直应力更加强烈. 所以, 对于高应力环境中的矿井需加强地应力测试, 并在巷道设计时充分考虑巷道布置及开采顺序. 对于受动力扰动强烈的巷道, 要求支护构件(锚杆、 锚索等)在受到一定动力扰动后仍能保持其有效性. 这一研究结果有助于进一步了解动静载叠加作用下深部巷道围岩变形破坏规律, 并可为相似地质条件下巷道支护设计及优化提供相应的指导.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. XIE He-ping, GAO Ming-zhong, ZHANG Ru, PENG Gao-you, WANG Wen-yong, LI An-qiang. Study on the mechanical properties and mechanical response of coal mining at 1000 m or deeper [J]. Rock Mechanics and Rock Engineering, 2019, 52(5): 1475–1490. DOI: https://doi.org/10.1007/s00603-018-1509-y.

    Article  Google Scholar 

  2. WAGNER H. Deep mining: A rock engineering challenge [J]. Rock Mechanics and Rock Engineering, 2019, 52(5): 1417–1446. DOI: https://doi.org/10.1007/s00603-019-01799-4.

    Article  Google Scholar 

  3. SHEN Bao-tang. Coal mine roadway stability in soft rock: A case study [J]. Rock Mechanics and Rock Engineering, 2014, 47(6): 2225–2238. DOI: https://doi.org/10.1007/s00603-013-0528-y.

    Article  Google Scholar 

  4. LI Shu-cai, WANG Qi, WANG Hong-tao, JIANG Bei, WANG De-chao, ZHANG Bing, LI Yong, RUAN Guo-qiang. Model test study on surrounding rock deformation and failure mechanisms of deep roadways with thick top coal [J]. Tunnelling and Underground Space Technology, 2015, 47: 52–63. DOI: https://doi.org/10.1016/j.tust.2014.12.013.

    Article  Google Scholar 

  5. ZHANG Zi-zheng, DENG Min, WANG Xiang-yu, YU Wei-jian, ZHANG Fei, DAO V D. Field and numerical investigations on the lower coal seam entry failure analysis under the remnant pillar [J]. Engineering Failure Analysis, 2020, 115: 104638. DOI: https://doi.org/10.1016/j.engfailanal.2020.104638.

    Article  Google Scholar 

  6. BAI Qing-sheng, TU Shi-hao. A general review on longwall mining-induced fractures in near-face regions [J]. Geofluids, 2019(19): 1–22. DOI: https://doi.org/10.1155/2019/3089292.

  7. ZHANG Cun, BAI Qing-sheng, CHEN Yan-hong. Using stress path-dependent permeability law to evaluate permeability enhancement and coalbed methane flow in protected coal seam: A case study [J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2020, 6(3): 1–25. DOI: https://doi.org/10.1007/s40948-020-00177-7.

    Article  Google Scholar 

  8. QI Qing-xin, PAN Yi-shan, LI Hai-tao, JIANG De-yi, SHU Long-yong, ZHAO Shan-kun, ZHANG Yong-jiang, PAN Jun-feng, LI Hong-yan, PAN Peng-zhi. Theoretical basis and key technology of prevention and control of coal-rock dynamic disasters in deep coal mining [J]. Journal of China Coal Society, 2020, 45(5): 1567–1584. DOI: https://doi.org/10.13225/j.cnki.jccs.DY20.0453. (in Chinese)

    Google Scholar 

  9. LI Xi-bing, ZOU Yang, ZHOU Zi-long. Numerical simulation of the rock SHPB test with a special shape striker based on the discrete element method [J]. Rock Mechanics & Rock Engineering, 2014, 47(5): 1693–1709. DOI: https://doi.org/10.1007/s00603-013-0484-6.

    Article  Google Scholar 

  10. LI Xi-bing, ZHOU Zi-long, LOK T, HONG Liang, YIN Tu-bing. Innovative testing technique of rock subjected to coupled static and dynamic loads [J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(5): 739–748. DOI: https://doi.org/10.1016/j.ijrmms.2007.08.013.

    Article  Google Scholar 

  11. LI Xi-bing, GONG Feng-qiang, TAO Ming, DONG Long-jun, DU Kun, MA Chun-de, ZHOU Zi-long, YIN Tu-bing. Failure mechanism and coupled static-dynamic loading theory in deep hard rock mining: a review [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2017, 9(4): 767–782. DOI: https://doi.org/10.1016/j.jrmge.2017.04.004.

    Article  Google Scholar 

  12. CHEN Xiang-jun, LI Li-yang, WANG Lin, QI Ling-ling. The current situation and prevention and control countermeasures for typical dynamic disasters in kilometer-deep mines in china [J]. Safety Science, 2019, 115: 229–236. DOI: https://doi.org/10.1016/j.ssci.2019.02.010

    Article  Google Scholar 

  13. LI Xi-bing, GU De-sheng. The hazard control and cataclastic mutagenesis induced by high stress in hard rock mining at depth [C]// The 175th Xiangshan Science Congress. Beijing: China Conditional Science Press, 2002. https://xueshu.baidu.com/usercenter/paper/show?paperid=1fe14d45bddd859a64357907877ae076&site=xueshu_se&hitarticle=1.

    Google Scholar 

  14. ZHOU Zi-long, LI Xi-bing, ZOU Yang, JIANG Yi-hui, LI Guo-nan. Dynamic brazilian tests of granite under coupled static and dynamic loads [J]. Rock Mechanics & Rock Engineering, 2014, 47(2): 495–505. DOI: https://doi.org/10.1007/s00603-013-0441-4.

    Article  Google Scholar 

  15. TAO Ming, ZHAO Hua-tao, LI Xi-bing, LI Xiang, DU Kun. Failure characteristics and stress distribution of pre-stressed rock specimen with circular cavity subjected to dynamic loading [J]. Tunnelling and Underground Space Technology, 2018, 81: 1–15. DOI: https://doi.org/10.1016/j.tust.2018.06.028.

    Article  Google Scholar 

  16. WU Qiu-hong, LI Xi-bing, WENG Lei, LI Qing-feng, ZHU Yong-jian, LUO Rong. Experimental investigation of the dynamic response of prestressed rockbolt by using an SHPB-based rockbolt test system [J]. Tunnelling and Underground Space Technology, 2019, 93: 103088. DOI: https://doi.org/10.1016/j.tust.2019.103088.

    Article  Google Scholar 

  17. WU Qiu-hong, CHEN Lu, SHEN Bao-tang, DLAMINI B, LI Shu-qing, ZHU Yong-jian. Experimental investigation on rockbolt performance under the tension load [J]. Rock Mechanics and Rock Engineering, 2019, 52(11): 4605–4618. DOI: https://doi.org/10.1007/s00603-019-01845-1.

    Article  Google Scholar 

  18. ZHOU Zi-Long, LI Di-yuan, MA Guo-wei, LI Jian-chun. Failure of rock under dynamic compressive loading [J]. Journal of Central South University, 2008, 15(3): 339–343. DOI: https://doi.org/10.1007/s11771-008-0064-1.

    Article  Google Scholar 

  19. LI Di-yuan, XIAO Peng, HAN Zhen-yu, ZHU Quan-qi. Mechanical and failure properties of rocks with a cavity under coupled static and dynamic loads [J]. Engineering Fracture Mechanics, 2020, 225: 106195. DOI: https://doi.org/10.1016/j.engfracmech.2018.

    Article  Google Scholar 

  20. LI Xi-bing, ZHOU Tao, LI Di-yuan. Dynamic strength and fracturing behavior of single-flawed prismatic marble specimens under impact loading with a split-Hopkinson pressure bar [J]. Rock Mechanics and Rock Engineering 2017, 50(1): 29–44. DOI: https://doi.org/10.1007/s00603-016-1093-y.

    Article  Google Scholar 

  21. WENG Lei, LI Xi-bing, TAHERI A, WU Qiu-hong, XIE Xiao-feng. Fracture evolution around a cavity in brittle rock under uniaxial compression and coupled static-dynamic loads [J]. Rock Mechanics and Rock Engineering, 2018, 51(2): 531–545. DOI: https://doi.org/10.1007/s00603-017-1343-7.

    Article  Google Scholar 

  22. SAINOKI A, MITRI H S. Dynamic behaviour of mining-induced fault slip [J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 66: 19–29. DOI: https://doi.org/10.1016/j.ijrmms.2013.12.003.

    Article  Google Scholar 

  23. XU Chao, FU Qiang, CUI, Xin-yuan, WANG Kai, CAI Yong-bo. Apparent-depth effects of the dynamic failure of thick hard rock strata on the underlying coal mass during underground mining [J]. Rock Mechanics and Rock Engineering, 2019, 52(5): 1565–1576. DOI: https://doi.org/10.1007/s00603-018-1662-3.

    Article  Google Scholar 

  24. KONG Peng, JIANG Li-shuai, JIANG Jin-quan, WU Yong-ning, CHEN Lian-jun, NING Jian-guo. Numerical analysis of roadway rock-burst hazard under superposed dynamic and static loads [J]. Energies, 2019, 12(19): 3761. DOI: https://doi.org/10.3390/en12193761.

    Article  Google Scholar 

  25. HE Hu, DOU Lin-ming, GONG Si-yuan, HE Jiang, ZHENG You-lei, ZHANG Xiong. Microseismic and electromagnetic coupling method for coal bump risk assessment based on dynamic static energy principles [J]. Safety Science, 2019, 114: 30–39. DOI: https://doi.org/10.1016/j.ssci.2018.12.025.

    Article  Google Scholar 

  26. HE Jiang, DOU Lin-ming, GONG Si-yuan, LI Jing, MA Zhi-qiang. Rock burst assessment and prediction by dynamic and static stress analysis based on micro-seismic monitoring [J]. International Journal of Rock Mechanics and Mining Sciences, 2017, 93: 46–53. DOI: https://doi.org/10.1016/j.ijrmms.2017.01.005.

    Article  Google Scholar 

  27. JIANG Li-shuai, SAINOKI A, MITRI HS, MA Nian-jie, LIU Hong-tao, HAO Zhen. Influence of fracture-induced weakening on coal mine gateroad stability [J]. International Journal of Rock Mechanics and Mining Sciences, 2016, 88: 307–317. DOI: https://doi.org/10.1016/j.ijrmms.2016.04.017.

    Article  Google Scholar 

  28. JIANG Li-shuai, KONG Peng, ZHANG Pei-peng, SHU Jia-ming, WANG Qing-biao, CHEN Lian-jun, WU Quan-lin. Dynamic analysis of the rock burst potential of a longwall panel intersecting with a fault [J]. Rock Mechanics and Rock Engineering, 2020, 53(4): 1737–1754. DOI: https://doi.org/10.1007/s00603-019-02004-2.

    Article  Google Scholar 

  29. JIANG Li-shuai, ZHAO Yang, GOLSANAMI N, CHEN Lian-jun, YAN Wei-chao. A novel type of neural networks for feature engineering of geological data: Case studies of coal and gas hydrate-bearing sediments [J]. Geoscience Frontiers, 2020, 11(5): 1511–1531. DOI: https://doi.org/10.1016/j.gsf.2020.04.016.

    Article  Google Scholar 

  30. HOEK E. Hoek-brown failure criterion-2002 edition [C]// Proceedings of the Fifth North American Rock Mechanics Symposium, 2002. https://www.researchgate.net/publication/266219674_Hoek-Brown_failure_criterion-2002_Edition.

  31. MUTKE G, DUBINSKI J, LURKA A. New criteria to assess seismic and rock burst hazard in coal mines [J]. Archives of Mining Sciences, 2015, 60(3): 743–760. DOI: https://doi.org/10.1515/amsc-2015-0049.

    Article  Google Scholar 

  32. Itasca. FLAC3D-fast Lagrangian analysis of continua [M]. 5th ed. Minneapolis: Itasca, 2009. https://www.itascacg.com/software/flac3d.

    Google Scholar 

  33. KANG Hong-pu, YI Bing-ding, GAO Fu-qiang, LÜ Wen-hua. Database and characteristics of underground in-situ stress distribution in Chinese coal mines [J]. Journal of China Coal Society, 2019, 44(1): 23–33. DOI: https://doi.org/10.13225/j.cnki.jccs.2018.5032. (in Chinese)

    Google Scholar 

  34. GONG Feng-qiang, WU Wu-xing, LI Tian-bin. Simulation test of spalling failure of surrounding rock in rectangular tunnels with different height-to-width ratios [J]. Bulletin of Engineering Geology and the Environment, 2020, 79: 3207–3219. DOI: https://doi.org/10.1007/s10064-020-01734-w.

    Article  Google Scholar 

  35. GONG Feng-qiang, YAN Jing-yi, LUO Song, LI Xi-bing. Investigation on the linear energy storage and dissipation laws of rock materials under uniaxial compression [J]. Rock Mechanics and Rock Engineering, 2019, 52(11): 4237–4255. DOI: https://doi.org/10.1007/s00603-019-01842-4.

    Article  Google Scholar 

  36. GONG Feng-qiang, WU Wu-xing, LI Tian-bin, SI Xue-feng. Experimental simulation and investigation of spalling failure of rectangular tunnel under different three-dimensional stress states [J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 122: 104081. DOI: https://doi.org/10.1016/j.ijrmms.2019.104081.

    Article  Google Scholar 

  37. WU Wu-xing, GONG Feng-qiang, YANG Wei-min. Experimental simulation study of spalling in deep rectangular tunnel with plastic fine grain marble [J]. Tunnelling and Underground Space Technology, 2020, 98: 103319. DOI: https://doi.org/10.1016/j.tust.2020.103319.

    Article  Google Scholar 

  38. LIU Xun, WANG Wei-jun, WU Hai, YUAN Chao. On expansion regularity of plastic zone of surrounding rock in rectangular tunnel [J]. Mineral Engineering Research, 2017, 32(1): 14–18. DOI: https://doi.org/10.13582/j.cnki.1674-5876.2017.01.003 (in Chinese)

    Google Scholar 

  39. LEE H, ONG S H. Estimation of in situ stresses with hydro-fracturing tests and a statistical method [J]. Rock Mechanics and Rock Engineering, 2018, 51(3): 779–799. DOI: https://doi.org/10.1007/s00603-017-1349-1.

    Article  Google Scholar 

  40. PENG S S. Coal mine ground control [M]. 3rd ed. Morgantown, 2008. https://www.researchgate.net/publication/255206999_Coal_mine_ground_control_3rd_ed.

  41. JI Ming, GUO Hong-jun. Influence of in-situ rock stress on the stability of roadway surrounding rock: A case study [J]. Journal of Geophysics and Engineering, 2020, 17(1): 138–147. DOI: https://doi.org/10.1093/jge/gxz097.

    Article  MathSciNet  Google Scholar 

  42. HE Man-chao, LI Chen, GONG Wei-li, SOUSA LR, LI Sheng-lin. Dynamic tests for a constant-resistance-large-deformation bolt using a modified SHTB system [J]. Tunnelling & Underground Space Technology, 2017, 64: 103–116. DOI: https://doi.org/10.1016/j.tust.2016.12.007

    Article  Google Scholar 

  43. LI Chun-lin. Rock support design based on the concept of pressure arch [J]. International Journal of Rock Mechanics & Mining Sciences, 2006, 43(7): 1083–1090. DOI: https://doi.org/10.1016/j.ijrmms.2006.02.007.

    Article  Google Scholar 

  44. KANG Hong-pu, JIANG Peng-fei, HUANG Bing-xiang, GUAN Xue-mao, WANG Zhi-gen, WU Yong-zheng, GAO Fu-qiang, YANG Jian-wei, CHENG Li-xing, ZHENG Yang-fa, LI Jian-zhong. Roadway strata control technology by means of bolting-modification-destressing in synergy in 1000 m deep coal mines [J]. Journal of China Coal Society, 2020, 45(3): 845–864. DOI: https://doi.org/10.13225/j.cnki.jccs.SJ20.0204. (in Chinese)

    Google Scholar 

  45. YANG Deng-feng, ZHANG Yong-jun, CHEN Zhong-hui. Analysis on catastrophe theory during first weighting sliding instability and support crushing of main roof with large mining height in shallow coal seam [J]. Applied Science, 2020, 10(16): 5408. DOI: https://doi.org/10.3390/app10165408.

    Article  Google Scholar 

  46. TAO Zhi-gang, SONG Zhi-gang, HE Man-chao, MENG Zhi-gang, PANG Shu-hui. Principles of the roof cut short-arm beam mining method (110 method) and its mining-induced stress distribution [J]. International Journal of Mining Science and Technology, 2018, 28(3): 391–396. DOI: https://doi.org/10.1016/j.ijmst.2017.09.002.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

WU Xing-yu performed numerical simulation, data analysis and writing manuscript. JIANG Li-shuai conducted project coordination and supervision. XU Xing-gang and GUO Tao performed data collation and drawing. ZHANG Pei-peng and HUANG Wan-peng checked the numerical simulation data. All authors have read and approved the content of the manuscript.

Corresponding author

Correspondence to Li-shuai Jiang  (蒋力帅).

Ethics declarations

WU Xing-yu, JIANG Li-shuai, XU Xing-gang, GUO Tao, ZHANG Pei-peng and HUANG Wan-peng declare that they have no conflict of interest.

Additional information

Foundation item: Projects(52074166, 51774195, 51704185) supported by the National Natural Science Foundation of China; Project(2019M652436) supported by the China Postdoctoral Science Foundation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Xy., Jiang, Ls., Xu, Xg. et al. Numerical analysis of deformation and failure characteristics of deep roadway surrounding rock under static-dynamic coupling stress. J. Cent. South Univ. 28, 543–555 (2021). https://doi.org/10.1007/s11771-021-4620-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-021-4620-2

Key words

关键词

Navigation