Skip to main content
Log in

Pyrolysis of different sewage sludge feedstocks for biochar products: Characterization and application

不同污水厂污泥热解生物炭的特性和应用研究

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Four sewage sludge (SS) feedstocks with distinct properties were converted into biochars by pyrolysis at 300–700 °C, in order to clarify the effects of the composition difference of SS feedstocks. The yields of biochars present a positive correlation with the contents of ash in SS. Notedly, the contents of organic matter (OM) in SS largely determine the quality of biochars. SS feedstocks with high content of OM are more likely to form stable biochars with higher aromaticity/carbonization degree, and the formed biochars possess higher calorific values. The contents of residual OM in biochars derived from SS feedstocks with low content of OM likely fail to meet the needs of soil improvement (10 wt.%). Most of heavy metals (HMs) existing in raw SS are remained in biochars after pyrolysis. The biochar produced from SS feedstocks with high content of HMs usually contains higher contents of HMs. Surprisingly, the leachability of HMs in biochars is all weakened to some extent compared to raw SS. In addition, the biochars show higher thermal stability and pH values, and P/K nutrients are enriched in biochars. The biochars prepared from four SS feedstocks exhibit different adsorption ability of methylene blue, especially at low dosage of biochar.

摘要

为了明确污泥原料本身构成差异对其热解制备生物炭的影响, 本研究对四种具有不同性质的污泥原料在 300∼700 °C 条件下进行了热解.生物炭的产率与污泥中灰分的含量呈现正相关. 更重要的是, 污泥中有机质含量在很大程度上决定了生物炭的品质. 有机质含量高的污泥原料更容易形成稳定的生物炭 (更高的芳香度/碳化度), 且生物炭具有更高的热值. 有机质含量低的污泥原料热解生成的生物炭中有机质残留量很大概率不能满足土壤改良的需要 (10 wt.%). 污泥中的重金属大部分在热解后仍存在于生物炭中污泥中. 重金属含量高的污泥原料制备的生物炭所含重金属含量也高. 有趣的是, 与污泥原料相比, 生物炭中重金属的浸出能力都有所减弱. 此外, 生物炭具有较高的热稳定性和 pH 值, 且富含 K/P 营养元素. 四种污泥原料制备的生物炭对亚甲基蓝的吸附能力不同, 在生物炭用量低的情况下尤为明显.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. XIAO Xin, CHEN Bao-liang, CHEN Zai-ming, ZHU Li-zhong, SCHNOOR J L. Insight into multiple and multilevel structures of biochars and their potential environmental applications: A critical review [J]. Environmental Science & Technology, 2018, 52: 5027–5047. DOI: https://doi.org/10.1021/acs.est.7b06487.

    Article  Google Scholar 

  2. YUAN Shen-nan, TAN Zhong-xin, HUANG Qiao-yun. Migration and transformation mechanism of nitrogen in the biomass-biochar-plant transport process [J]. Renewable and Sustainable Energy Reviews, 2018, 85: 1–13. DOI: https://doi.org/10.1016/j.rser.2018.01.008.

    Article  Google Scholar 

  3. LENG Li-jian, HUANG Hua-jun. An overview of the effect of pyrolysis process parameters on biochar stability [J]. Bioresource Technology, 2018, 270: 627–642. DOI: https://doi.org/10.1016/j.biortech.2018.09.030.

    Article  Google Scholar 

  4. TRIPATHI M, SAHU J N, GANESAN P. Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review [J]. Renewable and Sustainable Energy Reviews, 2016, 55: 467–481. DOI: https://doi.org/10.1016/j.rser.2015.10.122.

    Article  Google Scholar 

  5. TAN Xiao-fei, LIU Shao-bo, LIU Yun-guo, GU Yan-ling, ZENG Guang-ming, HU Xin-jiang, WANG Xin, LIU Shao-heng, JIANG Lu-hua. Biochar as potential sustainable precursors for activated carbon production: Multiple applications in environmental protection and energy storage [J]. Bioresource Technology, 2017, 227: 359–372. DOI: https://doi.org/10.1016/j.biortech.2016.12.083.

    Article  Google Scholar 

  6. QIAN Ke-zhen, KUMAR A, ZHANG Hai-lin, BELLMER D, HUHUKN R. Recent advances in utilization of biochar [J]. Renewable and Sustainable Energy Reviews, 2015, 42: 1055–1064. DOI: https://doi.org/10.1016/j.rser.2014.10.074.

    Article  Google Scholar 

  7. CHA Jin-sun, PARK S H, JUNG S C, RYU C, JEON J K, SHIN M C, PARK Y K. Production and utilization of biochar: A review [J]. Journal of Industrial and Engineering Chemistry, 2016, 40: 1–15. DOI: https://doi.org/10.1016/j.jiec.2016.06.002.

    Article  Google Scholar 

  8. RAHEEM A, SIKARWAR V S, HE Jun, DASTYAR W, DIONYSIOU D D, WANG Wei, ZHAO Ming. Opportunities and challenges in sustainable treatment and resource reuse of sewage sludge: A review [J]. Chemical Engineering Journal, 2018, 337: 616–641. DOI: https://doi.org/10.1016/j.cej.2017.12.149.

    Article  Google Scholar 

  9. HUANG Hua-jun, YUAN Xing-zhong. Recent progress in the direct liquefaction of typical biomass [J]. Progress in Energy and Combustion Science, 2015, 49: 59–80. DOI: https://doi.org/10.1016/j.pecs.2015.01.003.

    Article  Google Scholar 

  10. PAN Zi-qian, HUANG Hua-jun, ZHOU Chun-fei, LAI Fa-ying, HE Xiao-wu, XIONG Jiang-bo, XIAO Xiao-feng. Distribution and transformation behaviors of heavy metals during liquefaction process of sewage sludge in ethanol-water mixed solvents [J]. Journal of Central South University, 2019, 26(10): 2771–2784. DOI: https://doi.org/10.1007/s11771-019-4212-6.

    Article  Google Scholar 

  11. UDAYANGA W D C, VEKSHA A, GIANNIS A, LISAK G, CHANG V W, LIM T T. Fate and distribution of heavy metals during thermal processing of sewage sludge [J]. Fuel, 2018, 226: 721–744. DOI: https://doi.org/10.1016/j.fuel.2018.04.045.

    Article  Google Scholar 

  12. HUANG Hua-jun, YUAN Xing-zhong. The migration and transformation behaviors of heavy metals during the hydrothermal treatment of sewage sludge [J]. Bioresource Technology, 2016, 200: 991–998. DOI: https://doi.org/10.1016/j.biortech.2015.10.099.

    Article  Google Scholar 

  13. GAO Ning-bo, KAMRAM K, QUAN Cui, WILLIAMS P T. Thermochemical conversion of sewage sludge: A critical review [J]. Progress in Energy and Combustion Science, 2020, 79: 100843. DOI: https://doi.org/10.1016/j.pecs.2020.100843.

    Article  Google Scholar 

  14. SYED H S S A, WANG Yi, HU Song, SU Sheng, XIANG Jun. Thermochemical processing of sewage sludge to energy and fuel: Fundamentals, challenges and considerations [J]. Renewable and Sustainable Energy Reviews, 2017, 80: 888–913. DOI: https://doi.org/10.1016/j.rser.2017.05.262.

    Article  Google Scholar 

  15. YUAN Hao-ran, LU Tao, HUANG Hong-yu, ZHAO Dan-dan, NORIYUKI K, CHEN Yong. Influence of pyrolysis temperature on physical and chemical properties of biochar made from sewage sludge [J]. Journal of Analytical and Applied Pyrolysis, 2015, 112: 284–289. DOI: https://doi.org/10.1016/j.jaap.2015.01.010.

    Article  Google Scholar 

  16. CHEN Hui, CHEN De-zhen, HONG Liu. Influences of activation agent impregnated sewage sludge pyrolysis on emission characteristics of volatile combustion and De-NOx performance of activated char [J]. Applied Energy, 2015, 156: 767–775. DOI: https://doi.org/10.1016/j.apenergy.2015.05.098.

    Article  Google Scholar 

  17. YUAN Hao-ran, LU Tao, ZHAO Dan-dan, HUANG Hong-yu, NORIYUKI K, CHEN Yong. Influence of temperature on product distribution and biochar properties by municipal sludge pyrolysis [J]. Material Cycles and Waste Manage, 2013, 15(3): 357–361. DOI: https://doi.org/10.1007/s10163-013-0126-9.

    Article  Google Scholar 

  18. MENDEZ A, TERRADILLOS M, GASCO G. Physicochemical and agronomic properties of biochar from sewage sludge pyrolysed at different temperatures [J]. Journal of Analytical and Applied Pyrolysis, 2013, 102: 124–130. DOI: https://doi.org/10.1016/j.jaap.2013.03.006.

    Article  Google Scholar 

  19. CHEN Qin-dong, LIU Hu, KO J, WU Hua-nan, XU Qi-yong. Structure characteristics of bio-char generated from co-pyrolysis of wooden waste and wet municipal sewage sludge [J]. Fuel Processing Technology, 2019, 183: 48–54. DOI: https://doi.org/10.1016/j.fuproc.2018.11.005.

    Article  Google Scholar 

  20. ZHAO Bing, Xu Xin-yang, Xu Shu-cong, CHEN Xi, Li Hai-bo, ZENG Fan-qiang. Surface characteristics and potential ecological risk evaluation of heavy metals in the bio-char produced by co-pyrolysis from municipal sewage sludge and hazelnut shell with zinc chloride [J]. Bioresource Technology, 2017, 243: 375–383. DOI: https://doi.org/10.1016/j.biortech.2017.06.032.

    Article  Google Scholar 

  21. HUANG Hua-jun, YANG Ting, LAI Fa-ying, WU Guo-qiang. Co-pyrolysis of sewage sludge and sawdust/rice straw for the production of biochar [J]. Journal of Analytical and Applied Pyrolysis, 2017, 125: 61–68. DOI: https://doi.org/10.1016/j.jaap.2017.04.018.

    Article  Google Scholar 

  22. ZHOU Yuan, LIU Yong-ze, JIANG Wen-bo, SHAO Lin-lin, ZHANG Li-qiu, FENG Li. Effects of pyrolysis temperature and addition proportions of corncob on the distribution of products and potential energy recovery during the preparation of sludge activated carbon [J]. Chemosphere, 2019, 221: 175–183. DOI: https://doi.org/10.1016/j.chemosphere.2019.01.026.

    Article  Google Scholar 

  23. BOLOGNESI S, BERNARDI G, CALLEGARI A, DONDI D, CAPODAGLIO A G. Biochar production from sewage sludge and microalgae mixtures: Properties, sustainability and possible role in circular economy [J]. Biomass Conversion and Biorefinery, 2019. DOI: https://doi.org/10.1007/s13399-019-00572-5.

  24. LIU Ting-ting, LIU Zhen-gang, ZHENG Qing-fu, LANG Qian-qian, XIA Yu, PENG Nana, GAI Chao. Effect of hydrothermal carbonization on migration and environmental risk of heavy metals in sewage sludge during pyrolysis [J]. Bioresource Technology, 2018, 247: 282–290. DOI: https://doi.org/10.1016/j.biortech.2017.09.090.

    Article  Google Scholar 

  25. XU Xue-bin, HU Xin, DING Zhu-hong, CHEN Yi-jun. Effects of copyrolysis of sludge with calcium carbonate and calcium hydrogen phosphate on chemical stability of carbon and release of toxic elements in the resultant biochars [J]. Chemosphere, 2017, 189: 76–85. DOI: https://doi.org/10.1016/j.chemosphere.2017.09.021.

    Article  Google Scholar 

  26. CHEN Fang-fang, HU Yu-yan, DOU Xiao-min, CHEN De-zhen, DAI Xiao-hu. Chemical forms of heavy metals in pyrolytic char of heavy metal-implanted sewage sludge and their impacts on leaching behaviors [J]. Journal of Analytical and Applied Pyrolysis, 2015, 116: 152–160. DOI: https://doi.org/10.1016/j.jaap.2015.09.015.

    Article  Google Scholar 

  27. ZIELINSKA A, OLESZCZUK P. The conversion of sewage sludge into biochar reduces polycyclic aromatic hydrocarbon content and ecotoxicity but increases trace metal content [J]. Biomass and Bioenergy, 2015, 75: 235–244. DOI: https://doi.org/10.1016/j.biombioe.2015.02.019.

    Article  Google Scholar 

  28. JIN Hong-mei, ARAZO R O, GAO Jun, CAPAREDA S, CHANG Zhi-zhou. Leaching of heavy metals from fast pyrolysis residues produced from different particle sizes of sewage sludge [J]. Journal of Analytical and Applied Pyrolysis, 2014, 109: 168–175. DOI: https://doi.org/10.1016/j.jaap.2014.06.016.

    Article  Google Scholar 

  29. ZHAI Yun-bo, CHEN Hong-mei, XU Bi-bo, XIANG Bo-bin, CHEN Zhong, LI Cai-ting, ZENG Guang-ming. Influence of sewage sludge-based activated carbon and temperature on the liquefaction of sewage sludge: Yield and composition of bio-oil, immobilization and risk assessment of heavy metals [J]. Bioresource Technology, 2014, 159: 72–79. DOI: https://doi.org/10.1016/j.biortech.2014.02.049.

    Article  Google Scholar 

  30. YUAN Yong, YUAN Tian, WANG Ding-mei, TANG Jia-huan, ZHOU Shun-gui. Sewage sludge biochar as an efficient catalyst for oxygen reduction reaction in an microbial fuel cell [J]. Bioresource Technology, 2013, 144: 115–120. DOI: https://doi.org/10.1016/j.biortech.2013.06.075.

    Article  Google Scholar 

  31. BANDOSZ T J, BLOCK K. Effect of pyrolysis temperature and time on catalytic performance of sewage sludge/industrial sludge-based composite adsorbents [J]. Applied Catalysis B, Environmental, 2006, 67(1): 77–85. DOI: https://doi.org/10.1016/j.apcatb.2006.04.006.

    Article  Google Scholar 

  32. TANG Yao, ALAM M S, KONHAUSER K O, ALESSI D S, XU Sheng-nan, TIAN Wei-Jun, LIU Yang. Influence of pyrolysis temperature on production of digested sludge biochar and its application for ammonium removal from municipal wastewater [J]. Journal of Cleaner Production, 2019, 209: 927–936. DOI: https://doi.org/10.1016/j.jclepro.2018.10.268.

    Article  Google Scholar 

  33. ANTUNES E, SCHUMANN J, BRODIE G, JACOB M V, SCHNEIDER P A. Biochar produced from biosolids using a single-mode microwave: Characterisation and its potential for phosphorus removal [J]. Journal of Environmental Management, 2017, 196: 119–126. DOI: https://doi.org/10.1016/j.jenvman.2017.02.080.

    Article  Google Scholar 

  34. MIAN M M, LIU Gui-jian. Sewage sludge-derived TiO2/Fe/Fe3C-biochar composite as an efficient heterogeneous catalyst for degradation of methylene blue [J]. Chemosphere, 2019, 215: 101–114. DOI: https://doi.org/10.1016/j.chemosphere.2018.10.027.

    Article  Google Scholar 

  35. MENDEZ A, PAZ J, ARAUJO F, GASCO G. Biochar from pyrolysis of deinking paper sludge and its use in the treatment of a nickel polluted soil [J]. Journal of Analytical and Applied Pyrolysis, 2014, 107: 46–52. DOI: https://doi.org/10.1016/j.jaap.2014.02.001.

    Article  Google Scholar 

  36. GWENZI W, MUZAVA M, MAPANDA F, TAURO T P. Comparative short-term effects of sewage sludge and its biochar on soil properties, maize growth and uptake of nutrients on a tropical clay soil in Zimbabwe [J]. Journal of Integrative Agriculture, 2016, 15(6): 1395–1406. DOI: https://doi.org/10.1016/S2095-3119(15)61154-6.

    Article  Google Scholar 

  37. BREULMANN M, van AFFERDEN M, MULLER R A, SCHULZ E, FUHNER C. Process conditions of pyrolysis and hydrothermal carbonization affect the potential of sewage sludge for soil carbon sequestration and amelioration [J]. Journal of Analytical and Applied Pyrolysis, 2017, 124: 256–265. DOI: https://doi.org/10.1016/jjaap.2017.01.026.

    Article  Google Scholar 

  38. YUAN Hao-ran, LU Tao, WANG Ya-zhuo, CHEN Yong, LEI Ting-zhou. Sewage sludge biochar: Nutrient composition and its effect on the leaching of soil nutrients [J]. Geoderma, 2016, 26: 17–23. DOI: https://doi.org/10.1016/j.geoderma.2015.12.020.

    Article  Google Scholar 

  39. ZIELIŃSKA A, OLESZCZUK P, CHARMAS B, SKUBIZEWSKA J, PASIECZNA S. Effect of sewage sludge properties on the biochar characteristic [J]. Journal of Analytical and Applied Pyrolysis, 2015, 112: 201–213. DOI: https://doi.org/10.1016/j.jaap.2015.01.025.

    Article  Google Scholar 

  40. LU Huan-liang, ZHANG Wei-hua, WANG Shi-zhong, ZHUANG Lu-wen, YANG Yu-xi, QIU Rong-liang. Characterization of sewage sludge-derived biochars from different feedstocks and pyrolysis temperatures [J]. Journal of Analytical and Applied Pyrolysis, 2013, 102: 137–143. DOI: https://doi.org/10.1016/j.jaap.2013.03.004.

    Article  Google Scholar 

  41. PAN Zi-qian, HUANG Hua-jun, ZHOU Chun-fei, XIAO Xiao-feng, HE Xiao-wu, LAI Fa-ying, XIONG Jiang-bo. Highly efficient conversion of camphor tree sawdust into bio-oil and biochar products by liquefaction in ethanol-water cosolvent [J]. Journal of Analytical and Applied Pyrolysis, 2018, 136: 186–198. DOI: https://doi.org/10.1016/j.jaap.2018.10.006.

    Article  Google Scholar 

  42. AGRAFIOTI E, BOURAS G, KALDERIS D, DIAMADOPOULOS E. Biochar production by sewage sludge pyrolysis [J]. Journal of Analytical and Applied Pyrolysis, 2013, 101: 72–78. DOI: https://doi.org/10.1016/j.jaap.2013.02.010.

    Article  Google Scholar 

  43. HOSOKAI S, MATSUOKA K, KURAMOTO K, SUZUKI Y. Modification of Dulong’s formula to estimate heating value of gas, liquid and solid fuels [J]. Fuel Processing Technology, 2016, 152. DOI: https://doi.org/10.1016/j.fuproc.2016.06.040.

  44. HUANG Hua-jun, CHANG Yan-chao, LAI Fa-ying, ZHOU Chun-fei, PAN Zi-qian, XIAO Xiao-feng, WANG Jia-xin, ZHOU Chun-huo. Co-liquefaction of sewage sludge and rice straw/wood sawdust: The effect of process parameters on the yields/properties of bio-oil and biochar products [J]. Energy, 2019, 173: 140–150. DOI: https://doi.org/10.1016/j.energy.2019.02.071.

    Article  Google Scholar 

  45. YANG Ting, HUANG Hua-jun, LAI Fa-ying. Pollution hazards of heavy metals in sewage sludge from four wastewater treatment plants in Nanchang, China [J]. Transactions of Nonferrous Metals Society of China, 2017, 27(10): 2249–2259. DOI: https://doi.org/10.1016/S1003-6326(17)60251-6.

    Article  Google Scholar 

  46. YUAN Xing-zhong, HUANG Hua-jun, ZENG Guang-ming, LI Hui, WANG Jing-yu, ZHOU Chun-fei, ZHU Hui-na, PEI Xiao-kai, LIU Zhi-feng, LIU Zhan-tao. Total concentrations and chemical speciation of heavy metals in liquefaction residues of sewage sludge [J]. Bioresource Technology, 2011, 102(5): 4104–4110. DOI: https://doi.org/10.1016/j.biortech.2010.12.055.

    Article  Google Scholar 

  47. HUANG Hua-jun, YUAN Xing-zhong, ZENG Guang-ming, ZHU Hui-na, LI Hui, LIU Zhi-feng, JIANG Hong-wei, LENG Li-jian, BI Wen-kai. Quantitative evaluation of heavy metals’ pollution hazards in liquefaction residues of sewage sludge [J]. Bioresource Technology, 2011, 102(22): 10346–10351. DOI: https://doi.org/10.1016/j.biortech.2011.08.117.

    Article  Google Scholar 

  48. ZHANG Xiao-xiao, ZHANG Pei-zhen, YUAN Xiang-ru, LI Yan-fei, HAN Lu-jia. Effect of pyrolysis temperature and correlation analysis on the yield and physicochemical properties of crop residue biochar [J]. Bioresource Technology, 2020, 296: 122318. DOI: https://doi.org/10.1016/j.biortech.2019.122318.

    Article  Google Scholar 

  49. HE Xin-yan, LIU Zhao-xia, NIU Wen-juan, YANG Li, ZHOU Tan, QIN Di, NIU Zhi-you, YUAN Qiao-xia. Effects of pyrolysis temperature on the physicochemical properties of gas and biochar obtained from pyrolysis of crop residues [J]. Energy, 2018, 143: 746–756. DOI: https://doi.org/10.1016/j.energy.2017.11.062.

    Article  Google Scholar 

  50. UDAYANGA W D C, VEKSHA A, GIANNIS A, LIM T. Pyrolysis derived char from municipal and industrial sludge: Impact of organic decomposition and inorganic accumulation on the fuel characteristics of char [J]. Waste Management, 2019, 83: 131–141. DOI: https://doi.org/10.1016/j.wasman.2018.11.008.

    Article  Google Scholar 

  51. NANSUBUGA I, BANADDA N, RONSSE F, VERSTRAETE W, RABAEY K. Digestion of high rate activated sludge coupled to biochar formation for soil improvement in the tropics [J]. Water Research, 2015, 81: 216–222. DOI: https://doi.org/10.1016/j.watres.2015.05.047.

    Article  Google Scholar 

  52. XIONG Jiang-bo, PAN Zi-qian, XIAO Xiao-feng, HUANG Hua-jun, LAI Fa-ying, WANG Jia-xin, CHEN Shuai-wei. Study on the hydrothermal carbonization of swine manure: The effect of process parameters on the yield/properties of hydrochar and process water [J]. Journal of Analytical and Applied Pyrolysis, 2019, 144: 104692. DOI: https://doi.org/10.1016/j.jaap.2019.104692.

    Article  Google Scholar 

  53. LENG Li-jian, HUANG Hua-jun, LI Hui, LI Jun, ZHOU Wen-guang. Biochar stability assessment methods: A review [J]. Science of the Total Environment, 2019, 647: 210–222. DOI: https://doi.org/10.1016/j.scitotenv.2018.07.402.

    Article  Google Scholar 

  54. CONTI R, FABBRI D, VASSURA I, FERRONI L. Comparison of chemical and physical indices of thermal stability of biochars from different biomass by analytical pyrolysis and thermogravimetry [J]. Journal of Analytical and Applied Pyrolysis, 2016: 160–168. DOI: https://doi.org/10.1016/j.jaap.2016.10.003.

  55. HOSSAIN M K, STREZOV V, CHAN K Y, ZIOLKOWSKI A, NELSON P F. Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar [J]. Journal of Environmental Management, 2011, 92(1): 223–228. DOI: https://doi.org/10.1016/j.jenvman.2010.09.008.

    Article  Google Scholar 

  56. GB/T 24600 — 2009. Disposal of sludge from municipal wastewater treatment plant-Quality of sludge used in land improvement [S]. (in Chinese)

  57. SING K S W, EVERETT D H, HAUL R A W, MOSCOU L, PIEROTTI R A, ROUQUEROL J, SIEMIENIEWSKA T. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity [J]. Pure and Applied Chemistry, 1985, 57: 603–619. DOI: https://doi.org/10.1351/pac198557040603.

    Article  Google Scholar 

  58. LAI Fa-ying, CHANG Yan-chao, HUANG Hua-jun, WU Guo-qiang, XIONG Jiang-bo, PAN Zi-qian, ZHOU Chun-fei. Liquefaction of sewage sludge in ethanol-water mixed solvents for bio-oil and biochar products [J]. Energy, 2018, 148: 629–641. DOI: https://doi.org/10.1016/j.energy.2018.01.186.

    Article  Google Scholar 

  59. SRINIVASAN P, SARMAH A K, SMERNIK R, DAS O, FATID M, GAO Wei. A feasibility study of agricultural and sewage biomass as biochar, bioenergy and biocomposite feedstock: Production, characterization and potential applications [J]. Science of the Total Environment, 2015, 512–513: 495–505. DOI: https://doi.org/10.1016/j.scitotenv.2015.01.068.

    Article  Google Scholar 

  60. STREIT A F M, CORTES L N, DRUZIAN S P, GODINHO M, COLLAZZO G C, PERONDI D, DOTTO G L. Development of high quality activated carbon from biological sludge and its application for dyes removal from aqueous solutions [J]. Science of the Total Environment, 2019, 660: 277–287. DOI: https://doi.org/10.1016/j.scitotenv.2019.01.027.

    Article  Google Scholar 

  61. ZHOU Yan-bo, LU Jian, ZHOU Yi, LIU Yong-di. Recent advances for dyes removal using novel adsorbents: A review [J]. Environmental Pollution (Barking, Essex: 1987), 2019, 252(Pt A): 352–365. DOI: https://doi.org/10.1016/j.envpol.2019.05.072.

    Article  Google Scholar 

  62. SALLEH M A M, MAHMOUD D K, KARIM W A W A, IDRIS A. Cationic and anionic dye adsorption by agricultural solid wastes: A comprehensive review [J]. Desalination, 2011, 280(1): 1–13. DOI: https://doi.org/10.1016/j.desal.2011.07.019.

    Article  Google Scholar 

  63. WANG Hou, YUAN Xing-zhong, ZENG Guang-ming, LENG Li-jian, PENG Xin, LIAO Kai-ling-li, PENG Li-juan, XIAO Zhi-hua. Removal of malachite green dye from wastewater by different organic acid-modified natural adsorbent: kinetics, equilibriums, mechanisms, practical application, and disposal of dye-loaded adsorbent [J]. Environmental Science and Pollution Research International, 2014, 21(19): 11552–11564. DOI: https://doi.org/10.1007/s11356-014-3025-2.

    Article  Google Scholar 

  64. LENG Li-jian, YUAN Xing-zhong, HUANG Hua-jun, SHAO Jian-guang, WANG Hou, CHEN Xiao-hong, ZENG Guang-ming. Bio-char derived from sewage sludge by liquefaction: Characterization and application for dye adsorption [J]. Applied Surface Science, 2015, 346: 223–231. DOI: https://doi.org/10.1016/j.apsusc.2015.04.014.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

HUANG Hua-jun provided the idea of the study, developed the overarching research goal, and led the research activity planning and execution. LIU Ping made great contribution to the improvement of manuscript after the initial draft finished. WANG Jia-xin conducted the experiments, analyzed the test data, and wrote the initial draft of the manuscript. LAI Fa-ying offered some valuable suggestions for the contents of the manuscript and polished the language of the manuscript. All authors replied to reviewers’ comments and revised the final version.

Corresponding authors

Correspondence to Ping Liu  (刘平) or Hua-jun Huang  (黄华军).

Additional information

Conflict of interest

HUANG Hua-jun, LIU Ping, LAI Fa-ying and WANG Jia-xin declare that they have no conflict of interest.

Foundation item

Project(21707056) supported by the National Natural Science Foundation of China; Project(20192BAB203019) supported by the Natural Science Foundation of Jiangxi Province, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Jx., Liu, P., Lai, Fy. et al. Pyrolysis of different sewage sludge feedstocks for biochar products: Characterization and application. J. Cent. South Univ. 27, 3302–3319 (2020). https://doi.org/10.1007/s11771-020-4548-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-020-4548-y

Key words

关键词

Navigation