Skip to main content

Advertisement

Log in

Biochar – Recovery Material from Pyrolysis of Sewage Sludge: A Review

  • Review
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The treatment of sewage sludge (SS) is becoming one of the most important issues of the wastewater treatment cycle in European Union. Pyrolysis of SS is typically accompanied by production of pyrolysis oil, gas (syngas) and solid char product called either charcoal or biochar, when applied in agriculture. The main aim of this review is to summarize the knowledge on disposal of SS, thermal treatment of SS, especially pyrolysis, the characterization of produced sludge-derived biochar and to summarize the requirements for certification of SS biochar in agricultural application. The description of analyses includes determination of solid yield of biochar, immobilization of heavy metals in SS biochar, and structure of biochar including the surface morphology and specific surface area. It is concluded that pyrolysis represents an eco-friendly treatment of SS giving eco-friendly products, particularly biochar, and therefore it may represent a solution in terms of circular economy, carbon sequestration, contaminant immobilization, greenhouse gas reduction, soil fertilization and improvement of water retention.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wahi, R., Idris, A., Mohd Salleh, M.A., Khalid, K.: Low temperature microwave pyrolysis of sewage sludge. Int. J. Eng. Technol. 3, 132–138 (2006)

    Google Scholar 

  2. Xie, Q., Peng, P., Liu, S., Min, M., Cheng, Y., Wan, Y., Li, Y., Lin, X., Liu, Y., Chen, P., Ruan, R.: Fast microwave-assisted catalytic pyrolysis of sewage sludge for bio-oil production. Bioresour. Technol. 172, 162–168 (2014)

    Article  Google Scholar 

  3. Luo, Y., Guo, W., Ngo, H., Nghiem, L.D., Hai, F.I., Zhang, J., Liang, S., Wang, X.C.: A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci. Total Environ. 473, 619–641 (2014)

    Article  Google Scholar 

  4. Petrie, B., Barden, R., Kasprzyk-Hordern, B.: A review on emerging contaminants in wastewaters and the environment: current knowledge, understudied areas and recommendations for future monitoring. Water Res. 72, 3–27 (2015)

    Article  Google Scholar 

  5. Carr, S.A., Liu, J., Tesoro, A.G.: Transport and fate of microplastics particles in wastewater treatment plants. Water Res. 91, 174–182 (2016)

    Article  Google Scholar 

  6. Duis, K., Coors, A.: Microplastics in the aquatic and terrestrial environment: sources (with a specific focus on personal care products), fate and effects. Environ. Sci. Europe 28(1), 2 (2016)

    Article  Google Scholar 

  7. Raček, J., Ševčík, J., Chorazy, T., Kučerík, J., Hlavínek. P. Biochar – recovery material from microwave pyrolysis of sewage sludge. WasteEng 7th International Conference on Engineering for Waste and Biomass Valorisation. Prague: ČSCHI. pp. 1-9 (2018)

  8. Eurostat. Sewage sludge production and disposal. Sludge disposal – total. http://appsso.eurostat.ec.europa.eu/nui/show.do?lang=en&dataset=env_ww_spd (2018). Accessed 29 August 2018

  9. European Commission, Ninth Report on the implementation status and the programmes for implementation (as required by Article 17) of Council Directive 91/271/EEC concerning urban waste water treatment, Brussels (2017)

  10. Disposal of sewage sludge from public waste water treatment, 2013-2016, https://www.destatis.de/EN/FactsFigures/NationalEconomyEnvironment/Environment/EnvironmentalSurveys/WaterSupplyIndustry/Tables/TableWastWaterDisposalSewageSludge.html (2018). Accessed 29 August 2018

  11. Council Directive 86/278/EEC of 12 June 1986 on the protection of the environment, and in particular of the soil, when sewage sludge is used in agriculture (1986)

  12. Council Directive 91/271/EEC of 21 May 1991 concerning urban waste-water treatment (1991)

  13. Council Directive 91/156/EEC of 18 March 1991 amending Directive 75/442 EEC on waste (1991)

  14. Council Directive 75/442/EEC of 15 July 1975 on waste (1975)

  15. Council Directive 1999/31/EC of 26 April 1999 on the landfill of waste (1999)

  16. Directive 2000/76/EC of the European Parliament and of the Council of 4 December 2000 on the incineration of waste (2000)

  17. Decree on the use of sewage sludge from waste water treatment plant, sewage sludge mixtures and sewage sludge compost from sewage treatment plants (sewage sludge control - AbfKlärV), https://www.gesetze-im-internet.de/abfkl_rv_2017/BJNR346510017.html (2017). Accessed 30 August 2018

  18. New sewage sludge ordinance reforms sewage sludge utilisation and sustainable phosphorus utilization, Federal Ministry for the Environment, Nature Conservation, Building and Nuclear Safety, Case Study, https://www.unece.org/fileadmin/DAM/RCM_Website/SDG_6_Additional_Case_Study2.pdf. Accessed 30 August 2018

  19. Decree of 30 January 1998, containing rules relating to the quality and the application of other organic fertilizers to soil (Decision on quality and use of other organic fertilizers). http://wetten.overheid.nl/BWBR0009360/2006-01-01. Accessed 30 August 2018

  20. European Commission. Environmental, economic and social impacts of the use of sewage sludge on land. Final Report. Part III: Project Interim Reports. http://ec.europa.eu/environment/archives/waste/sludge/pdf/part_iii_report.pdf (2010) Accessed 30 August 2018

  21. Federal Waste Management Plan (Bundes-Abfallwirtschaftsplan). Bundesministerium, Nachhaltigkeit und Tourismus. https://www.bmnt.gv.at/umwelt/abfall-ressourcen/bundes-abfallwirtschaftsplan.html (2018). Accessed 30 August 2018

  22. European Suistainable Phosphorus Platform. Austria opts for mandatory phosphorus recovery from sewage sludge. https://phosphorusplatform.eu/scope-in-print/news/1396-austria-manadatory-p-recovery# (2017). Accessed 30 August 2018

  23. National Waste Management Plan 2022. Annex to the Resolution No 88 of the Council of Ministers of 1 July 2016 (item 784). Warsaw. 203 pages. (2016)

  24. The Federal Council. The portal of the Swiss government. Switzerland. Ban on the use of sludge as a fertilizer. https://www.admin.ch/gov/en/start/documentation/media-releases.msg-id-1673.html (2003). Accessed 30 August 2018

  25. Decree No. 437/2016 On conditions for the use of modified sludge on agricultural land. Czech Republic (2016)

  26. Decree No. 383/2001 On waste management details. Czech Republic (2001)

  27. Decree No. 341/2008 On details of the treatment of biodegradable wastes. Czech Republic (2008)

  28. Decree No. 294/2005 On the conditions of landfilling of waste and its use on the surface. Czech Republic (2005)

  29. Decree No. 383/2001 On details waste management. Czech Republic (2001)

  30. Act No. 185/2001 The Waste Act and the amendment of some other Acts. Czech Republic (2001)

  31. Act No. 223/2015 amending Act No 185/2001 on waste and amending certain other acts, as amended, and Act No 169/2013 amending Act No 185/2001 on waste Act No. 25/2008 on the integrated register of environmental pollution and on the integrated system for the fulfillment of environmental reporting obligations and on the amendment of some other acts, as amended, and Act No. 56/2004 Coll., on the amendment of some other acts, as amended, 2001, on conditions for the operation of vehicles on roads, as amended. Czech Republic (2015)

  32. Act No. 254/2001 on water and amending certain acts (Water Act). Czech Republic (2011)

  33. Huang, Y.F., Chiueh, P.T., Kuan, W.H., Lo, S.L.: Microwave pyrolysis of lignocellulosic biomass: Heating performance and reaction kinetics. Energy 100, 137–144 (2016)

    Article  Google Scholar 

  34. Daneshgar, S., Callegari, A., Capodaglio, A., Vaccari, D.: The potential phosphorus crisis: resource conservation and possible escape technologies: a review. Resources. 7, 37 (2018)

    Article  Google Scholar 

  35. Cooper, J., Lombardi, R., Boardman, D., Carliell-Marquet, C. The future distribution and production of global phosphate rock reserves, Resources, Conservation and Recycling, Volume 57, pp 78-86, ISSN 0921-3449, https://doi.org/10.1016/j.resconrec.2011.09.009 (2011)

  36. Yuan, Z., Pratt, S., Batstone, D.J.: Phosphorus recovery from wastewater through microbial processes. Curr. Opin. Biotechnol. 23(6), 878–883 (2012)

    Article  Google Scholar 

  37. Kibet, J., Khachatryan, L., Dellinger, B.: Molecular Products and Radicals from Pyrolysis of Lignin. Environ. Sci. Technol. 46(23), 12994–13001 (2012). https://doi.org/10.1021/es302942c

    Article  Google Scholar 

  38. Katuscak, S., Surina, I., Sutý, S, Tino, R., Vizarova, K. Lignocellulose materials. Natural Renewable Raw Materials and Products - Structure, Properties, Use and Protection, LCM - Lignocelulózové materiály. Prírodné obnoviteľné suroviny a produkty – štruktúra, vlastnosti, použitie, ochrana (2012)

  39. Jayasinghe, P, Hawboldt, K:A review of bio-oils from waste biomass: Focus on fish processing waste. Renew. Sustain. Energy Rev. 16 (2012)

  40. Šejvl, R.: Energy gasification and its way to higher efficiency and energy recovery of waste. Technical Systems Usable for Energy Waste Utilization, Overview of Development Trends Their Way to Achieving Higher Energy Efficiency (2009)

    Google Scholar 

  41. Rada, E.C.: Thermochemical Waste Treatment, Combustion. CRC Press Taylor and Francis Group, Gasification and Other Methodologies (2017)

    Book  Google Scholar 

  42. Le Gleau, F., Caillat, S., Perdrix, E., Gasnot, L., Gambier, D., Pauwels, J.: Comparative Study of Flue Gas Dry Desulphurization and SCR Systems in a Industrial Hazardous Waste Incineration. In: Rada, E.C. (ed.) Thermochemical Waste Treatment, Combustion, Gasification and Other Methodologies, pp. 4–14. CRC Press Taylor and Francis Group, Boca Raton (2017)

    Google Scholar 

  43. European Commission. Integrated Pollution Prevention and Control. Reference Document on the Best Available Techniques for Waste Incineration (2006)

  44. Johnke, B. Good Practice Guidance and Uncertainly Management in NationGreenhouse Gas Inventories. Emissions from Waste Incineration. Waste Sector. https://www.ipcc-nggip.iges.or.jp/public/gp/bgp/5_3_Waste_Incineration.pdf Accessed 30 August 2018

  45. Kumarathilaka, P., Mayakaduwa, S., Herath, I., Vithanage, M.: Biochar. In: Wong, M.H., Ok, Y.S. (eds.) Biochar:Production, Characterization and Applications, pp. 18–42. CRC Press Taylor and Francis Group, Boca Raton (2016)

    Google Scholar 

  46. Thangarajan, R., Bolan, N., Mandal, S., Kunhikrishnan, A., Choppala, G., Karunanithi, R., Qi, F.: Biochar for Inorganic Contaminant Management in Soil. In: Wong, M.H., Ok, Y.S. (eds.) Biochar: Production, Characterization and Applications, pp. 46–65. CRC Press Taylor and Francis Group, Boca Raton (2016)

    Google Scholar 

  47. Brick, S.: Biochar: Assessing the Promise and Risk to Guide U.S. Policy. NRDC Issue Paper. Natural Resources Defence Council (2010)

  48. Callegari, A., Capodaglio, A.G.: Properties and Beneficial Uses of (Bio)Chars, with Special Attention to Products from Sewage Sludge Pyrolysis. Resources 7, 20 (2018)

    Article  Google Scholar 

  49. Libra, J., Ro, K., Kammann, C., Funke, A., Berge, N., Neubauer, Y., Titirici, M.M., Fühner, C., Bens, O., Kern, J., Emmerich, K.H.: Hydrothermal carbonization of biomass residuals: a comparative review of the chemistry, processes and applications of wet and dry pyrolysis. Biofuels. 2, 71–106 (2011)

    Article  Google Scholar 

  50. Brewer, C.E., Schmidt-Rohr, K., Satrio, J.A., Brown, R.C.: Characterization of biochar from fast pyrolysis and gasification systems. Environ. Prog. Sustainable Energy 28, 386–396 (2009)

    Article  Google Scholar 

  51. Kambo, H., Dutta, A.: A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications. Renew. Sustain. Energy Rev. 45, 359–378 (2015)

    Article  Google Scholar 

  52. Castaldi, M. J.: Biomass and RDF Gasification Utilizing Ballistic Heating TGA Analysis. In: Rada, E.C.: Thermochemical Waste Treatment, Combustion, Gasification and Other Methodologies. pp. 33-51. CRC Press Taylor and Francis Group (2017)

  53. Ramarao, M., Senthil kumar, M., Vivekanandan, S., Suresh, V., Senthil kumar, S., Jayaprakash, D. Effect of Biomass Blending on Gasification: A Review. Advances in Natural and Applied Sciences. 11(4). Pp. 300-310 (2017)

  54. Bridgwater, A.V.: Renewable fuels and chemicals by thermal processing of biomass. Chem. Eng. J. 91(2–3), 87–102 (2003)

    Article  Google Scholar 

  55. Mumme, J., Eckervogt, L., Pielert, J., Diakité, M., Rupp, F., Kern, J.: Hydrothermal carbonization of anaerobically digested maize silage. Bioresour. Technol. 102(19), 9255–9260 (2011)

    Article  Google Scholar 

  56. Hoekman, S.K., Broch, A., Robbins, C.: Hydrothermal carbonization (HTC) of selected woody and herbaceous biomass feedstocks. Biomass Convers. Biorefinery 3(2), 113 (2013)

    Article  Google Scholar 

  57. Pala, M., Kantarli, I.C., Buyukisik, H.B., Yanik, J.: Hydrothermal carbonization and torrefaction of grape pomace: a comparative evaluation. Bioresour Technol. 161, 255–262 (2014)

    Article  Google Scholar 

  58. Liu, Z., Balasubramanian, R.: Upgrading of waste biomass by hydrothermal carbonization (HTC) and low temperature pyrolysis (LTP): a comparative evaluation. Appl. Energy. 114, 857–864 (2014)

    Article  Google Scholar 

  59. Yan, W., Hastings, J.T., Acharjee, T.C., Coronella, C.J., Vásquez, V.R.: Mass and energy balances of wet torrefaction of lignocellulosic biomass. Energy Fuels 24(9), 4738–4742 (2010)

    Article  Google Scholar 

  60. Fonts, I., Gea, G., Azuara, M., Abrego, J., Arauzo, J.: Sewage sludge pyrolysis for liquid production: a review. Renew. Sustain. Energy Rev. 16, 2781–2805 (2012)

    Article  Google Scholar 

  61. Ševčík, J., Raček, J., Hluštík, P., Hlavínek, P., Dvořák, K.: Microwave pyrolysis full-scale application on sewage sludge. Desalin. Water Treat. 112, 161–170 (2017)

    Article  Google Scholar 

  62. Raček, J., Capodaglio, A., Ševčík, J., Chorazy, T., Hlavínek, P.: Microwave pyrolysis treatment of sewage sludge: Performed at laboratory and full-scale conditions, 17th International multidisciplinary scientific geoconference SGEM 2017, ISSN 1314-2704, ISBN 978-619-7408-28-7. SGEM, Bulgaria (2017)

    Google Scholar 

  63. Capodaglio, A.G., Callegari, A., Dondi, D.: Microwave-induced pyrolysis for production of sustainable biodiesel from waste sludges. Waste Biomass Valoriz. 7(4), 703–709 (2016)

    Article  Google Scholar 

  64. Song, G., Shen, L., Xiao, J.: Estimating specific chemical exergy of biomass from basic analysis data. Indus. Eng. Chem. Res. 50(16), 9758–9766 (2011)

    Article  Google Scholar 

  65. Uchimiya, S. M.: Biochar Production Technology. M.: Biochar. In: Wong, M.H., Ok, Y. S. Biochar: Production, Characterization and Applications. pp. 46-65. CRC Press Taylor and Francis Group (2016)

  66. Motasemi, F., Afzal, M.T.: A review on the microwave-assisted pyrolysis technique. Renew. Sustain. Energy Rev. 28, 317–330 (2013)

    Article  Google Scholar 

  67. Zhang, Y., Chen, P., Liu, S., Peng, P., Min, M., Cheng, Y., Anderson, E., Zhou, N., Fan, L., Liu, C., Chen, G., Liu, Y., Hanwu, L., Li, B., Ruan, R.: Effects of feedstock characteristics on microwave-assisted pyrolysis – A review. Bioresour. Technol. 230, 143–151 (2017)

    Article  Google Scholar 

  68. Beneroso, D., Monti, T., Kostas, E.T., Robinson, J.: Microwave pyrolysis of biomass for bio-oil production: scalable processing concepts. Chem. Eng. J. 316, 481–498 (2017)

    Article  Google Scholar 

  69. Callegari, A., Hlavinek, P., Capodaglio, A. G. Production of energy (biodiesel) and recovery of materials (biochar) from pyrolysis of urban waste sludge. Rev. Ambient. Água, Taubaté, http://dx.doi.org/10.4136/ambi-agua.2128 (2018)

  70. Pimchuai, A., Dutta, A., Basu, P.: Torrefaction of agriculture residue to enhance combustible properties. Energy Fuels 24(9), 4638–4645 (2010)

    Article  Google Scholar 

  71. Rousset, P., Macedo, L., Commandré, J.M., Moreira, A.: Biomass torrefaction under different oxygen concentrations and its effect on the composition of the solid by-product. J. Anal. Appl. Pyrolysis. 96, 86–91 (2012)

    Article  Google Scholar 

  72. Stelt, M.J.C., Gerhauser, H., Kiel, J.H.A.: Ptasinski, KJ Biomass upgrading by torrefaction for the production of biofuels: a review. Biomass Bioenergy. 35(9), 3748–3762 (2011)

    Google Scholar 

  73. Amonette, J. E., Joseph S.: Characteristic of Biochar: Microchemical Properties. In: Lehmann, J., Joseph, S.: Biochar for Environmental Management. Science and Technology. MPG Books. UK (2009)

  74. Ochodek, T., Koloničný, J., Branc, M.: Technology for the Preparation and Energy Utilization of Biomass. VŠB - Technical University of Ostrava, Study under the project Local heating and biomass electricity (2007)

    Google Scholar 

  75. Capodaglio, A.G., Callegari, A.: Feedstock and process influence on biodiesel produced from waste sewage sludge. J. Environ. Manage. 216, 176–182 (2018)

    Article  Google Scholar 

  76. Clark, D.E., Sutton, W.H.: Microwave processing of materials. Annu. Rev. Mater. Sci. 26, 299–331 (1996)

    Article  Google Scholar 

  77. Fitzer, E., Kochling, K.H., Boehm, H.P., Marsh, H.: Recommended terminology for the description of carbon as a solid (IUPAC recommendations). Pure Appl. Chem. 67(3), 473–506 (1995)

    Article  Google Scholar 

  78. Lehmann, J., Joseph, S.: Biochar for environmental management: Science and technology. Earthscan in the UK and USA, Sterling (2009)

    Google Scholar 

  79. Rajapaksha, A.U., Mohan, D., Igalavithana, A.D., Lee, S.S., Ok, Y.S.M.: Definition and Fundamentals of Biochar. In: Wong, M.H., Ok, Y.S. (eds.) Biochar: Production, Characterization and Applications, pp. 4–16. CRC Press Taylor and Francis Group, Boca Raton (2016)

    Google Scholar 

  80. Sohi, S., Loez-Capel, E., Krull, E.: Bol, R:Biochar, climate change and soil: a review to guide future research. CSIRO Land Water Sci. Rep. 5(9), 17–31 (2009)

    Google Scholar 

  81. Verheijen, F., Jeffery, S., Bastos, A.C., Velde, M., Diafas, I. Biochar application to soils. A critical scientific review on soil properties, processes and functions. European Commission, Office for Official Publications of the European Communities, Luxembourg. ISBN 978-92-79-14293-2 (2010)

  82. IBI (2015) International Biochar Initiative. Standardized Product Definition and Product Testing Guidelines for Biochar That Is Used in Soil. Product Definition and Specification Standards (2015)

  83. EBC (2012) European Biochar Certificate - Guidelines for a Sustainable Production of Biochar. European Biochar Foundation (EBC), Arbaz, Switzerland. http://www.european- biochar.org/en/download. Version 6.3E of 14th, https://doi.org/10.13140/rg.2.1.4658.7043 (2017)

  84. Regulation (EC) No 1107/2009 of the European Parliament and of the Council of 21 October 2009 concerning the placing of plant protection products on the market and repealing Council Directives 79/117/EEC and 91/414/EEC. http://data.europa.eu/eli/reg/2009/1107/oj (2009) Accessed 30 August 2018

  85. Council Directive 79/117/EEC of 21 December 1978 prohibiting the placing on the market and use of plant protection products containing certain active substances. http://data.europa.eu/eli/dir/1979/117/oj (1978) Accessed 30 August 2018

  86. Council Directive 91/414/EEC of 15 July 1991 concerning the placing of plant protection products on the market. http://data.europa.eu/eli/dir/1991/414/oj (1991) Accessed 30 August 2018

  87. Act No. 156/1998 Coll., On fertilizers, auxiliary soil substances, auxiliary plant preparations and substrates and on agrochemical testing of agricultural soils (Fertilizer Act). Czech Republic. http://eagri.cz/public/web/mze/legislativa/pravni-predpisy-mze/tematicky-prehled/Legislativa-MZe_uplna-zneni_zakon-1998-156-hnojiva.html (1998) Accessed 30 August 2018

  88. Liu, T., Liu, Z., Zheng, Q., Lang, Q., Xia, Y., Peng, N., Gai, C.: Effect of hydrothermal carbonization on migration and environmental risk of heavy metals in sewage sludge during pyrolysis. Bioresour. Technol. 247, 282–290 (2018)

    Article  Google Scholar 

  89. Hua, W., Boqiang, G., Jie, R., Aimin, L., Hu, Y. Coagulation/flocculation in dewatering of sludge: A review. Water Research. 143. 10.1016/j.watres.2018.07.029 (2018)

  90. Huber Sludge Treatment. Huber Technology. Waste Water Solution. Screening – Thickening – Dewatering – Drying – Utilization. http://www.hubercs.cz/fileadmin/01_products/04_sludge/pro_ue_ros_en.pdf Accessed 30 August 2018

  91. Raček, J., Anferova, N., Hlustik, P., Hlavínek, P. Optimizing Sludge Management at the Municipal Solid Waste Incinerator - A Case Study. Proceedings - Open Access Journal, No. 2, č. 651, pp. 1-9. ISSN: 2504-3900 (2018)

  92. Mowla, D., Tran, H., Allen, D.: A review of the properties of biosludge and its relevance to enhanced dewatering processes. Biomass Bioenergy. 58, 365–378 (2013)

    Article  Google Scholar 

  93. Ševčík, J. Solární vs. belt drying of sewage sludge, Conference Proceedings of the Municipal Water Conference, Velké Bílovice (2016)

  94. Ševčík, J. Solar or belt drying of sewage sludge - optimal solution for sludge end, HUBER CS, spol. s.r.o. Cihlářská 19, 602 00 Brno, Proceedings of the Conference wastewater, Pleso (2012)

  95. Hartig, K. Problems of sludge management - sludge drying, Sweco Hydroprojekt a.s., Táborská 31, Prague, Water Management magazine 04/2017 (2017)

  96. Raček, J., Doskočil, B., Ševčík, J., Chorazy, T., Hlavínek, P. Drying of sludge for conditions of the Czech Republic. Vodovod.info, No. 8, pp. 1-14. ISSN: 1804-7157 http://www.vodovod.info/index.php/kanalizace-a-cov/388-suseni-cistirenskeho-kalu-pro-podminky-ceske-republiky#.W5GHAPbfNPY Accessed 30 August 2018

  97. Raček, J., Chorazy, T., Novák, V., Čáslavský, J., Hlavínek, P. Energy efficiency of dry sewage sludge before and after low-temperature microwave pyrolysis. Naxos 2018 6th International Conference on Sustainable Solid Waste Management. Athens, Greece: National Technical University of Athens. pp. 1-11 (2018)

  98. Piskorz, J., Scott, D.S., Westerberg, I.B.: Flash pyrolysis of sewage sludge. Ind. Eng. Chem. Process Design Dev. 25(1), 265–270 (1986)

    Article  Google Scholar 

  99. Chen, T., Zhang, Y., Wang, H., Lu, W., Zhou, Z., Zhang, Y., Ren, L.: Influence of pyrolysis temperature on characteristics and heavy metal adsorptive performance of biochar derived from municipal sewage sludge. Bioresour. Technol. 164, 47–54 (2014)

    Article  Google Scholar 

  100. Atienza-Martínez, M., Fonts, I., Lázaro, L., Ceamanos, J., Gea, G.: Fast pyrolysis of torrefied sewage sludge in a fluidized bed reactor. Chem. Eng. J. 259, 467–480 (2015)

    Article  Google Scholar 

  101. Zielińska, A., Oleszczuk, P., Charmas, B., Skubiszewska-Zięba, J., Pasieczna-Patkowska, S.: Effect of sewage sludge properties on the biochar characteristic. J. Anal. Appl. Pyrolysis. 112, 201–213 (2015)

    Article  Google Scholar 

  102. Lu, H., Zhang, W., Wang, S.Z., Zhuang, L., Yang, Y., Qiu, R.: Characterization of sewage sludge-derived biochars from different feedstocks and pyrolysis temperatures. J. Anal. Appl. Pyrolysis. 102, 137–143 (2013)

    Article  Google Scholar 

  103. Agrafioti, E., Bouras, G., Kalderis, D., Diamadopoulos, E.: Biochar production by sewage sludge pyrolysis. J. Anal. Appl. Pyrolysis. 101, 72–78 (2013)

    Article  Google Scholar 

  104. Agar, D., Kwapinska, M., Leahy, J.J.: Pyrolysis of wastewater sludge and composted organic fines from municipal solid waste: laboratory reactor characterisation and product distribution. Environ. Sci. Pollut. Res. 25(36), 3874–35882 (2018)

    Article  Google Scholar 

  105. Hossain, M.K., Strezov, V., Chan, K.Y., Ziolkowski, A., Nelson, P.F.: Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar. J. Environ. Manage. 92(1), 223–228 (2011)

    Article  Google Scholar 

  106. Roberts, D.A., Cole, A.J., Whelan, A., Nys, R., Paul, N.A.: Slow pyrolysis enhances the recovery and reuse of phosphorus and reduces metal leaching from biosolids. Waste Manage. 64, 133–139 (2017)

    Article  Google Scholar 

  107. Méndez, A., Terradillos, M., Gascó, G.: Physicochemical and agronomic properties of biochar from sewage sludge pyrolysed at different temperatures. J. Anal. Appl. Pyrolysis. 102, 124–130 (2013)

    Article  Google Scholar 

  108. Antunes, E., Schumann, J., Brodie, G., Mohan, V.J., Schneider, P.A.: Biochar produced from biosolids using a single-mode microwave: characterisation and its potential for phosphorus removal. J. Environ. Manage. 196, 119–126 (2017)

    Article  Google Scholar 

  109. Menéndez, J.A., Inguanzo, M.: Pis, JJ:Microwave-induced pyrolysis of sewage sludge. Water Res. 36, 3261–3264 (2002)

    Article  Google Scholar 

  110. Raček, J., Ševčík, J., Komendová, R., Kučerík, J., Hlavínek, P. Heavy metal fixation in biochar after microwave pyrolysis of sewage sludge. Naxos 2018 6th International Conference on Sustainable Solid Waste Management. Athens, Greece: National Technical University of Athens. pp. 1-11 (2018)

  111. Özçimen, D., Ersoy-Meriçboyu, A.: Characterization of biochar and bio-oil samples obtained from carbonization of various biomass materials. Renew. Energy. 35(6), 1319–1324 (2010)

    Article  Google Scholar 

  112. Mukome, F.N.D., Parikh, S.J.: Chemical, Physical, and Surface Characterization of Biochar. In: Wong, M.H., Ok, Y.S. (eds.) Biochar: Production, Characterization and Applications, pp. 68–96. CRC Press Taylor and Francis Group, Boca Raton (2016)

    Google Scholar 

  113. Xu, G., Lv, Y., Sun, J., Shao, H., Wei, L.: Recent advances in biochar applications in agricultural soils: benefits and environmental implications. Clean Soil Air Water. 40, 1093–1098 (2012)

    Article  Google Scholar 

  114. Keiluweit, M., Nico, P.S., Johnson, M.G., Kleber, M.: Dynamic molecular structure of plant biomass-derived black carbon (Biochar). Environ. Sci. Technol. 44(4), 1247–1253 (2010)

    Article  Google Scholar 

  115. Spokas, K.: Review of the stability of biochar in soils: predictability of O: C molar ratios. Carbon Manage. 1(2), 289–303 (2010)

    Article  Google Scholar 

  116. Carpenter, S.R., Caraco, N.F., Correll, D.L., Howarth, R.W., Sharpley, A.N., Smith, V.H.: Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol. Appl. 8, 559–568 (1998)

    Article  Google Scholar 

  117. ASB-Portal. New methods to disposal of wastewater. asb-portal.cz. Mifková Tatiana, 2013. http://www.asb-portal.cz/tzb/zdravotni-technika/nove-metody-nakladani-s-odpadnimi-vodami-2687.html (2011) Accessed 30 August 2018

  118. Lehmann, J., Rillig, M.C., Thies, J., Masiello, C.A., Hockaday, W.C., Crowley, D.: Biochar effects on soil biota: a review. Soil Biol. Biochem. 43, 1812–1836 (2011)

    Article  Google Scholar 

  119. Van Zwieten, L., Kimber, S., Morris, S., Chan, K., Downie, A., Rust, J., Joseph, S., Cowie, A.: Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant Soil. 327, 235–246 (2010)

    Article  Google Scholar 

  120. Lehmann, J., Czimczik, C.I., Laird, D.L., Sohi, S.: Stability of biochar in soil. In: Johannes, L., Stephen, J. (eds.) Biochar for Environmental Management: Science and Technology, pp. 183–206. London, UK, Earthscan (2009)

    Google Scholar 

  121. USEPA. Biosolids Generation, Use and Disposal in the United States; USEPA Office of Solid Waste: Washington, DC, USA (1999)

  122. Zhao, B., Xu, X., Xu, S., Chen, X., Li, H., Zeng, F.: Surface characteristics and potential ecological risk evaluation of heavy metals in the bio-char produced by co-pyrolysis from municipal sewage sludge and hazelnut shell with zinc chloride. Biores. Technol. 243, 375–383 (2017)

    Article  Google Scholar 

  123. Liu, T., Liu, Z., Zhengc, O., Lang, Q., Xia, Y., Peng, N., Gai, Ch.: Effect of hydrothermal carbonization on migration and environmental risk of heavy metals in sewage sludge during pyrolysis. Biores. Technol. 247, 282–290 (2018)

    Article  Google Scholar 

  124. Liu, X., Wang, Y., Gui, C., Li, P., Zhang, J., Zhong, H., Wei, Y.: Chemical forms and risk assessment of heavy metals in sludge-biochar produced by microwave-inducted pyrolysis. RSC Adv. 6, 101960–101967 (2016)

    Article  Google Scholar 

  125. Yuan, X., Huang, H., Zeng, G., Li, H., Wang, J., Zhou, C., Zhu, H., Pei, X., Liu, Z., Liu, Z.: Total concentrations and chemical speciation of heavy metals in liquefaction residues of sewage sludge. Bioresour. Technol. 102(5), 4104–4110 (2011)

    Article  Google Scholar 

  126. Jin, J., Li, Y., Zhang, J., Wu, S., Cao, Y., Liang, P., Zhang, J., Wong, M.H., Wang, M., Shan, S., Christie, P.: Influence of pyrolysis temperature on properties and environmental safety of heavy metals in biochars derived from municipal sewage sludge. J. Hazard. Mater. 320, 417–426 (2016)

    Article  Google Scholar 

  127. Zhang, X., McGrouther, K., He, L., Huang, H., Lu, K., Wang, H.: Biochar for Organic Contaminant Management in Soil. In: Wong, M.H., Ok, Y.S. (eds.) Biochar: Production, Characterization and Applications, pp. 4–16. CRC Press Taylor and Francis Group, Boca Raton (2016)

    Google Scholar 

  128. Schmidt H. P. 55 Anwendungen von Pflanzenkohle. Journal für Terroirwein und Biodiversität, ISSN 1663-0521 (2010)

  129. Glaser, B., Haumaier, L., Guggenberger, G., Zech, W.: The ‘Terra Preta’ phenomenon: a model for sustainable agriculture in the humid tropics. Die Naturwissenschaften. 88, 37–41 (2001)

    Article  Google Scholar 

  130. Paz-Ferreiro, J., Nieto, A., Méndez, A., Askeland, M.P.J., Gascó, G.: Biochar from Biosolids Pyrolysis: a Review. Int. J. Environ. Res. Public Health 15, 956 (2018)

    Article  Google Scholar 

  131. Kubík, L. Risk elements in sludge from sewage treatment plants (WWTPs). Biom.cz [online]. 2009-02-09. Available from www: https://biom.cz/en/odborne-clanky/rizikove-prvky-v-kalech-z-cistiren-odpadnich-vod-cov. ISSN: 1801-2655 (2009)

  132. Atkinson, C.J., Fitzgerald, J.D., Hipps, N.A.: Potential Mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review. Plant Soil. 337, 1–18 (2010)

    Article  Google Scholar 

  133. Schmidt, H.P.: Treating liquid manure with biochar. Ithaka J. 1, 273–276 (2012)

    Google Scholar 

  134. Schmidt HP:Ways of making terra preta: biochar activation. J. Terrior-wine Biodivers. ISSN 1663-0521 (2008)

  135. Zhang, C., Geng, Z., Cai, M., Zhang, J., Liu, X., Xin, H., Ma, J.: Microstructure regulation of super activated carbon from biomass source corncob with enhanced hydrogen uptake. Int. J. Hydrog. Energy. 38, 9243–9250 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This paper has been worked out under the project No. LO1408 “AdMaS UP - Advanced Materials, Structures and Technologies”, supported by Ministry of Education, Youth and Sports under the „National Sustainability Programme I”. J. Kučerík acknowledge the financial support of the FCH-S-18-5331 project of the Ministry of Education, Youth and Sports of the Czech Republic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jakub Racek.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Racek, J., Sevcik, J., Chorazy, T. et al. Biochar – Recovery Material from Pyrolysis of Sewage Sludge: A Review. Waste Biomass Valor 11, 3677–3709 (2020). https://doi.org/10.1007/s12649-019-00679-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-019-00679-w

Keywords

Navigation