Skip to main content
Log in

Cations stress on low-grade nickel sulfide ore oxidation leaching

阳离子胁迫下低品位硫化镍矿的氧化浸出行为

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The effects of cations stress of magnesium ion and sodium ion on the low-grade nickel sulfide ore oxidative leaching in simulated sulfuric acid solutions were investigated. This study was performed in two courses, including the effect of the cations on the valuable metals leaching efficiencies of the nickel ore and its influences on the electrochemical oxidation behavior of the nickel ore. The leaching results present that parts of magnesium-containing gangues and ferrous sulfide are preferentially dissolved into lixivium, and the leaching efficiencies of Ni and Cu decreased much related to the leached concentrations of Mg2+ increased. The results of electrochemical measurements show that the oxidation leaching of the low-grade nickel sulfide ore is controlled by the intermediates oxidative diffusion. Mg2+, as well as Na+, affects the transformations of the Fe3+/Fe2+ couple and sulfur-containing species, and those cations are apt to be attracted by the anions and directionally adhere to the negative active site of the metal sulfide surface, causing an increase in the electrochemical activities, which facilitates the electron transfer between the ore and leaching mediums. By comparative study of the role of Mg2+ and Na+, it is found that Mg2+ negatively affects the oxidative diffusion of the intermediates through promoting the generation of a compact film, which lowers the metals leached efficiencies, and the unfavorable effect of Na+ tends to be the coupled effect of the leached Mg2+ and Fe3+.

摘要

本文模拟研究了镁离子和钠离子胁迫对低品位硫化镍矿氧化浸出的影响. 主要研究阳离子对有价值金属的浸出效率的影响以及含镍硫化矿石的电化学氧化行为. 浸出试验结果表明, 部分含镁脉石和含亚铁硫化物会优先溶解在浸出液中, 浸出过程中 Ni 和 Cu 的浸出效率下降与 Mg2+ 的浸出浓度增加相关性较大. 电化学研究结果表明, 低品位硫化镍矿的氧化浸出受中间产物氧化扩散的控制. Mg2+ 和 Na+ 影响 Fe3+ /Fe2+ 电对和含硫物质的转化, 这些阳离子易受硫化矿物表面阴离子吸引并定向粘附在金属硫化物表面荷负电的活性位点, 从而增加界面电子转移的电化学活性, 促进矿石与浸出介质之间的电子转移. 通过比较 Mg2+ 和 Na+ 的作用, 发现 Mg2+ 通过促成致密钝化膜的形成, 降低了金属矿物的浸出效率, 对反应中间产物的氧化扩散不利, 而 Na+ 的不利影响往往是与优先被浸出的 Mg2+ 和 Fe3+ 协同作用引起.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. KERFOOT D G E. Nickel [M]//Ullmann’s Encyclopedia of Industrial Chemistry. 2000. DOI: https://doi.org/10.1002/14356007.a17_157.

  2. DAI Ta-gen, PAN Jun-qing, ZHANG De-xian. The 70-year progress of non-ferrous metal exploration in China [J]. The Chinese Journal of Nonferrous Metals, 2019, 29(9): 1817–1827. DOI: https://doi.org/10.19476/j.ysxb.1004.0609.2019.09.03. (in Chinese)

    Google Scholar 

  3. TANG Zhong-li, REN Duan-jin. Types and metallogenic models of nickel sulfide deposits of China [J]. Acta Geologica Sinica, 1988, 1(2): 193–206. DOI: https://doi.org/10.1111/j.1755-6724.1988.mp1002006.x.

    Google Scholar 

  4. SUN Tao, WANG Deng-hong, QIAN Zhuang-zhi, FU Yong, CHEN Zheng-hui, LOU De-bo. Summary of metallogenic regularity for the nickel deposits, China [J]. Acta Geologica Sinica, 2014, 88(12): 2227–2251. DOI: https://doi.org/10.1002/pc.750150203. (in Chinese)

    Google Scholar 

  5. EKSTEEN J J, ORABY E A, NGUYEN V. Leaching and ion exchange based recovery of nickel and cobalt from a low grade, serpentine-rich sulfide ore using an alkaline glycine lixiviant system [J] Minerals Engineering, 2020, 145: 106073. DOI: https://doi.org/10.1016/j.mineng.2019.106073.

    Article  Google Scholar 

  6. CUI Fu-hui, MU Wen-ning, ZHAI Yu-chun, GOU Xue-yi. The selective chlorination of nickel and copper from low-grade nickel-copper sulfide-oxide ore: Mechanism and kinetics [J]. Separation and Purification Technology, 2020, 239: 116577. DOI: https://doi.org/10.1016/j.seppur.2020.116577.

    Article  Google Scholar 

  7. SUN Jian-zhi, CHEN Bo-wei, WEN Jian-kang, WANG Dian-zuo. Application and research progresses of hydrometallurgy technology for nickel ore [J]. The Chinese Journal of Nonferrous Metals, 2018, 28(2): 356–364. DOI: https://doi.org/10.19476/j.ysxb.1004.0609.2018.02.18. (in Chinese)

    Article  Google Scholar 

  8. LI Guang-shi, CHENG Hong-wei, XU Cong, LU Chang-yuan, LU Xiong-gang, ZOU Xing-li, XU Qian. Mineralogical analysis of nickel/copper polymetallic sulfide ore by X-ray diffraction using Rietveld method [C]//TMS 2016 Annual Meeting & Exhibition, Characterization of Minerals, Metals, and Materials 2016. Springer International Publishing, 2016. DOI: https://doi.org/10.1007/978-3-319-48210-1_8.

  9. PORTER T M. Regional tectonics, geology, magma chamber processes and mineralisation of the Jinchuan nickel- copper-PGE deposit, Gansu province, China: A review [J]. Geosience Frontiers, 2016, 7(3): 431–451. DOI: https://doi.org/10.1016/j.gsf.2015.10.005.

    Article  Google Scholar 

  10. RAO G V. Nickel and cobalt ores: Flotation [M]//Encyclopedia of Separation Science. Amsterdam: Elsevier, 2000: 3491–3500.

    Chapter  Google Scholar 

  11. BARSKII L A, RYBASV V, FAT YANOVA M A, PONOMAREV G P. Influence of sulfur-containing ions on selective flotation of copper-nickel ores [J]. Soviet Mining, 1986, 22(4): 310–316. DOI: https://doi.org/10.1007/BF02500860.

    Article  Google Scholar 

  12. YU Da-wei, UTIGARD T A, BARATI M. Fluidized bed selective oxidation-sulfation roasting of nickel sulfide concentrate: Part II. Oxidation roasting [J]. Metallurgical and Materials Transactions B, 2014, 45(2): 653–661. DOI: https://doi.org/10.1007/s11663-013-9958-x.

    Article  Google Scholar 

  13. HUANG Kai-guo, CHEN Wan-xiong, PENG Xian-gan, ZENG Xiao-xi. A flotation technique for low-grade nickel ore [J]. The Chinese Journal of Nonferrous Metals, 1999, 9(3): 601–605. DOI: https://doi.org/10.19476/j.ysxb.1004.0609.1999.03.030. (in Chinese)

    Google Scholar 

  14. IMIDEEV V A, ALEKSANDROV P V, MEDVEDEV A S, BAZHENOVA O V, KHANAPIEVA A R. Nickel sulfide concentrate processing using low-temperature roasting with sodium chloride [J]. Metallurgist, 2014, 58(5,6): 353–359. DOI: https://doi.org/10.1007/s11015-014-9915-1.

    Article  Google Scholar 

  15. HARRIS C T, PEACEY J G, PICKLESC A. Selective sulphidation and flotation of nickel from a nickeliferous laterite ore [J]. Minerals Engineering, 2013, 54: 21–31. DOI: https://doi.org/10.1016/j.mineng.2013.02.016.

    Article  Google Scholar 

  16. WATLING H R. The bioleaching of nickel-copper sulfides [J]. Hydrometallurgy, 2008, 91(1–4): 70–88. DOI: https://doi.org/10.1016/j.hydromet.2007.11.012.

    Article  Google Scholar 

  17. DYSON N F, SCOTT T R. Acid leaching of nickel sulphide concentrates [J]. Hydrometallurgy, 1976, 1(4): 361–372. DOI: https://doi.org/10.1016/0304-386X(76)90037-2.

    Article  Google Scholar 

  18. BRYNER L C, JAMESON A K. Microorganisms in leaching sulfide minerals [J]. Applied Microbiology, 1958, 6(4): 281–287. DOI: https://doi.org/10.1021/ie50574a033.

    Article  Google Scholar 

  19. ZHEN Shi-jie, QIN Wen-qing, YAN Zhong-qiang, ZHANG Yan-sheng, WANG Jun, REN Liu-yi. Bioleaching of low grade nickel sulfide mineral in column reactor [J]. Transactions of Nonferrous Metals Society of China, 2008, 18(6): 1480–1484. DOI: https://doi.org/10.1016/s1003-6326(09)60029-7.

    Article  Google Scholar 

  20. SUN Jian-zhi, WEN Jian-kang, CHEN Bo-wei, WU Biao. Mechanism of Mg2+ dissolution from olivine and serpentine: Implication for bioleaching of high-magnesium nickel sulfide ore at elevated pH [J]. International Journal of Minerals Metallurgy and Materials, 2019, 26(9): 1069–1079. DOI: https://doi.org/10.1007/s12613-019-1823-8.

    Article  Google Scholar 

  21. KANG Jin-xing, FENG Ya-li, LI Hao-ran, DU Zhu-wei, DENG Xiang-yi, WANG Hong-jun. New understanding of the reduction mechanism of pyrolusite in the Acidithiobacillus ferrooxidans bio-leaching system [J]. Electrochimica Acta, 2019, 297: 443–451. DOI: https://doi.org/10.1016/j.electacta.2018.12.031.

    Article  Google Scholar 

  22. SUN Chong, CHEN Xue-an, CHANG Xin-an, XIAO Wei-qiang, WANG Shao-hua, CHEN Yan-jun. Study on acid leaching conditions of Ni from tailings [J]. Inorganic Chemicals Industry, 2013, 45(8): 49–51, 54. DOI: https://doi.org/10.3969/j.issn.1006-4990.2013.08.016. (in Chinese)

    Google Scholar 

  23. DORADO A D, SOLE M, LAO C, ALFONSO P, GAMISANS X. Effect of pH and Fe(III) ions on chalcopyrite bioleaching by an adapted consortium from biogas sweetening [J]. Minerals Engineering, 2012, 39: 36–38. DOI: https://doi.org/10.1016/j.mineng.2012.06.009.

    Article  Google Scholar 

  24. BREDENHANN R, VUUREN C P J V. The leaching behavior of a nickel concentrate in an oxidative sulfuric acid solution [J]. Minerals Engineering, 1999, 12(6): 687–692. DOI: https://doi.org/10.1016/S0892-6875(99)00051-5.

    Article  Google Scholar 

  25. LI Hong-xu, LI Chao, ZHANG Zhi-qian. Decomposition mechanism of pentlandite during electrochemical bio-oxidation process [J]. Transactions of Nonferrous Metals Society of China, 2012, 22(3): 731–739. DOI: https://doi.org/10.1016/s1003-6326(11)61238-7.

    Article  Google Scholar 

  26. AHMADI A, SCHAFFIE M, PETERSEN J, SCHIPPERS A, RANJBAR M. Conventional and electrochemical bioleaching of chalcopyrite concentrates by moderately thermophilic bacteria at high pulp density [J]. Hydrometallurgy, 2011, 106(1,2): 84–92. DOI: https://doi.org/10.1016/j.hydromet.2010.12.007.

    Article  Google Scholar 

  27. ALMEIDA C M V B, GIANNETTI B F. The electrochemical behavior of pyrite-pyrrhotite mixtures [J]. Journal of Electroanalytical Chemistry, 2003, 553: 27–34. DOI: https://doi.org/10.1016/S0022-0728(03)00254-7.

    Article  Google Scholar 

  28. MARAPE G, VEMAAK M K G. Fundamentals of pentlandite mineralogy and its effect on its electrochemical behavior [J]. Minerals Engineering, 2012, 32: 60–67. DOI: https://doi.org/10.1016/j.mineng.2012.03.031.

    Article  Google Scholar 

  29. LI Y, KAWASHIMA N, LI J, CHANDRA A P, GERSON A R. A review of the structure, and fundamental mechanisms and kinetics of the leaching of chalcopyrite [J]. Advances in Colloid & Interface Science, 2013, 197–198: 1–32. DOI: https://doi.org/10.1016/j.cis.2013.03.004.

    Google Scholar 

  30. KARIMI S, GHAHREMAN A, RASHCHI F. Kinetics of Fe(III)-Fe(II) redox half-reactions on sphalerite surface [J]. Electrochimica Acta, 2018, 281: 624–637. DOI: https://doi.org/10.1016/j.electacta.2018.05.132.

    Article  Google Scholar 

  31. YANG Cong-ren, JIAO Fen, QIN Wen-qing. Leaching of chalcopyrite: An emphasis on effect of copper and iron ions [J]. Journal of Central South University, 2018, 25(10): 2380–2386. DOI: https://doi.org/10.1007/s11771-018-3922-5.

    Article  Google Scholar 

  32. TAMURA H, KAWAMURA S, HAGAYAMA M. Acceleration of the oxidation of Fe2+ ions by Fe(III)-oxyhydroxides [J]. Corrosion Science, 1980, 20(8, 9): 963–971. DOI: https://doi.org/10.1016/0010-938X(80)90077-3.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

KANG Jin-xing, WANG Xin and WANG Ya-yun provided the methodology, conducted the tests, wrote original draft, and revised and edited the manuscript. LIU Zhao-bo and HAN Guo-qiang revised the manuscript, and provided financial support. WANG Chuan-long, and LIU Zhi-Guo revised and edited the manuscript. All authors replied to reviewers’ comments and revised the final version.

Corresponding author

Correspondence to Jin-xing Kang  (康金星).

Additional information

Conflict of interest

The authors declare no conflict of interest.

Foundation item

Projects (2019M650972, 2017M621034) supported by China Postdoctoral Science Foundation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, Jx., Wang, X., Wang, Yy. et al. Cations stress on low-grade nickel sulfide ore oxidation leaching. J. Cent. South Univ. 27, 3278–3289 (2020). https://doi.org/10.1007/s11771-020-4546-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-020-4546-0

Key words

关键词

Navigation