Skip to main content
Log in

Role and maintenance of redox potential on chalcopyrite biohydrometallurgy: An overview

氧化还原电位在黄铜矿生物湿法冶金中的作用及其调控: 综述

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Chalcopyrite is one of the most important copper minerals; however, the extracted efficiency of chalcopyrite is still not satisfactory in hydrometallurgy owing to its high lattice energy which leads to its low dissolution kinetics. To overcome the difficulties, many advanced technologies have been developed, including the selection of high effectively bacteria, the inhibition of the passivation film adhered onto the minerals surface, and the maintenance of solution redox potential under an optimum range. Up to date, considerable researches on the first two terms have been summarized, while the overview of the last term has been rarely reported. Based on corresponding works in recent years, key trends and roles of solution redox potential in copper hydrometallurgy, including its definition, effect and maintenance, have been introduced in this review.

摘要

黄铜矿是一种重要的铜资源, 但由于黄铜矿晶格能较高, 溶解动力学较低, 致其在湿法冶金过程中浸出效率不理想. 为了解决这一问题进行了一系列新技术的研究, 包括对高效菌株的选育, 抑制在矿物表面钝化膜的生成, 以及控制溶液氧化还原电位在最佳区间内. 目前, 对前两个技术的研究工作已有大量的总结, 而对于控制氧化还原电位这一过程的工作总结较少. 本文通过研究近年来的相关工作, 介绍了铜湿法冶金过程中溶液氧化还原电位的定义、 作用以及对氧化还原电位的控制等相关内容.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. CORDOBA E M, MUNOZ J A, BLAZQUEZ M L, GONZALEZ F, BALLESTER A. Leaching of chalcopyrite with ferric ion. Part I: General aspects [J]. Hydrometallurgy, 2008, 93(3, 4): 81–87. DOI: 10.1016/j.hydromet.2008.04.015.

    Article  Google Scholar 

  2. HARMER S L, THOMAS J E, FORNASIERO D, GERSON A R. The evolution of surface layers formed during chalcopyrite leaching [J]. Geochimica et Cosmochimica Acta, 2006, 70(17): 4392–4402. DOI: 0.1016/j.gca.2006.06.1555.

    Article  Google Scholar 

  3. LI Yu-biao, KAWASHIMA N, LI J, CHANDRA A P, GERSON A R. A review of the structure, and fundamental mechanisms and kinetics of the leaching of chalcopyrite [J]. Advances in Colloid and Interface Science, 2013, 197: 1–32. DOI: 10.1016/j.cis.2013.03.004.

    Google Scholar 

  4. CHANG Ke-xin, ZHANG Yan-sheng, ZHANG Jia-ming, LI Teng-fei, WANG Jun, QIN Wen-qing. Effect of temperature-induced phase transitions on bioleaching of chalcopyrite [J]. Transactions of Nonferrous Metals Society of China, 2019, 29(10): 2183–2191. DOI: /10.1016/s1003-6326(19)65124-1.

    Article  Google Scholar 

  5. WANG Jun, HU Ming-hao, ZHAO Hong-bo, TAO Lang, GAN Xiao-wen, QIN Wen-qing, QIU Guan-zhou. Well-controlled column bioleaching of a low-grade copper ore by a novel equipment [J]. Journal of Central South University, 2015, 22(9): 3318–3325. DOI: 10.1007/s11771-015-2872-4.

    Article  Google Scholar 

  6. WATLING H R. Chalcopyrite hydrometallurgy at atmospheric pressure: 1. Review of acidic sulfate, sulfate-chloride and sulfate-nitrate process options [J]. Hydrometallurgy, 2013, 140: 163–180. DOI: 10.1016/j.hydromet.2013.09.013.

    Article  Google Scholar 

  7. YANG Bao-jun, LUO Wen, WANG Xing-xing, YU Shi-chao, GAN Min, WANG Jun, LIU Xue-duan, QIU Guan-zhou. The use of biochar for controlling acid mine drainage through the inhibition of chalcopyrite biodissolution [J]. Science of the Total Environment, 2020, 139485. DOI: 10.1016/j.scitotenv.2020.139485.

  8. OLIVEIRA D C, DUARTE H A. Disulphide and metal sulphide formation on the reconstructed (001) surface of chalcopyrite: A DFT study [J]. Applied Surface Science, 2010, 257(4): 1319–1324. DOI: 10.1016/j.apsusc.2010.08.059.

    Article  Google Scholar 

  9. OERTZEN V G, HARMER S L, SKINNER W M. XPS and Ab initio calculation of surface states of sulfide minerals: Pyrite, chalcopyrite and molybdenite [J]. Molecular Simulation, 2006, 32(15): 1207–1212. DOI: 10.1080/08927020601081616.

    Article  Google Scholar 

  10. MIKHLIN Y, TOMASHEVICH Y, TAUSON V, VYALIKH D, MOLODTSOV S, SZARGAN R. A comparative X-ray absorption near-edge structure study of bornite, Cu5FeS4, and chalcopyrite, CuFeS2 [J]. Journal of Electron Spectroscopy and Related Phenomena, 2005, 142(1): 83–88. DOI: 10.1016/j.elspec.2004.09.003.

    Article  Google Scholar 

  11. LLANOS J, BULJAN A, MUJICA C, RAMÍREZ R. Electron transfer in the insertion of alkali metals in chalcopyrite [J]. Materials Research Bulletin, 1995, 30(1): 43–48. DOI: 10.1016/0025-5408(94)00105-7.

    Article  Google Scholar 

  12. VERA M, SCHIPPERS A, SAND W. Progress in bioleaching: Fundamentals and mechanisms of bacterial metal sulfide oxidation-Part A [J]. Applied Microbiology and Biotechnology, 2013, 97(17): 7529–7541. DOI: 10.1007/s00253-013-4954-2.

    Article  Google Scholar 

  13. RAWLINGS D E, JOHNSON D B. Biomining [M]. New York: Springer, 2007.

    Book  Google Scholar 

  14. MISHRA D, KIM D, AHN J G, RHEE Y H. Bioleaching: A microbial process of metal recovery: A review [J]. Metals and Materials International, 2005, 11(3): 249–256. DOI: 10.1007/BF03027450.

    Article  Google Scholar 

  15. BRIERLEY J A, BRIERLEY C L. Present and future commercial applications of biohydrometallurgy [J]. Hydrometallurgy, 2001, 59(2): 233–239. DOI: 10.1016/S0304-386X(00)00162-6.

    Article  Google Scholar 

  16. ZHAO Hong-bo, WANG Jun, GAN Xiao-wen, ZHENG Xi-hua, TAO Lang, HU Ming-hao, LI Yi-ni, QIN Wen-qing, QIU Guan-zhou. Effects of pyrite and bornite on bioleaching of two different types of chalcopyrite in the presence of Leptospirillum ferriphilum [J]. Bioresoure Technology, 2015, 194: 28–35. DOI: 10.1016/j.biortech.2015.07.003.

    Article  Google Scholar 

  17. JOHNSON D B. Biomining-biotechnologies for extracting and recovering metals from ores and waste materials [J]. Current Opinion in Biotechnology, 2014, 30: 24–31. DOI: 10.1016/j.copbio.2014.04.008.

    Article  Google Scholar 

  18. SCHIPPERS A, HEDRICH S, VASTERS J, DROBE M, SAND W, WILLSCHER S. Biomining: Metal recovery from ores with microorganisms [J]. Advances in Biochemical Engineering/Biotechnology, 2014, 141: 1–47. DOI: 10.1007/10_2013_216.

    Google Scholar 

  19. HONG Mao-xin, WANG Xing-xing, WU Ling-bo, FANG Chao-jun, HUANG Xiao-tao, LIAO Rui, ZHAO Hong-bo, QIU Guan-zhou, WANG Jun. Intermediates transformation of bornite bioleaching by Leptospirillum ferriphilum and Acidithiobacillus caldus [J]. Minerals, 2019, 9(3): 159. DOI: 10.3390/min9030159.

    Article  Google Scholar 

  20. FANG Chao-jun, YU Shi-chao, WANG Xing-xing, ZHAO Hong-bo, QIN Wen-qing, QIU Guan-zhou, WANG Jun. Synchrotron radiation XRD investigation of the fine phase transformation during synthetic chalcocite acidic ferric sulfate leaching [J]. Minerals, 2018, 8(10): 461. DOI: 10.3390/min8100461.

    Article  Google Scholar 

  21. ZHAO Hong-bo, HUANG Xiao-tao, HU Ming-hao, ZHANG Chen-yang, ZHANG Yi-sheng, WANG Jun, QIN Wen-qing, QIU Guan-zhou. Insights into the surface transformation and electrochemical dissolution process of bornite in bioleaching [J]. Minerals, 2018, 8(4): 173. DOI: 10.3390/min8040173.

    Article  Google Scholar 

  22. YANG Cong-ren, QIN Wen-qing, LAI Shao-shi, WANG Jun, ZHANG Yan-sheng, JIAO Fen, REN Liu-yi, ZHUANG Tian, CHANG Zi-yong. Bioleaching of a low grade nickel-copper-cobalt sulfide ore [J]. Hydrometallurgy, 2011, 106(1, 2): 32–37. DOI: 10.1016/j.hydromet.2010.11.013.

    Article  Google Scholar 

  23. ZHEN Shi-jie, YAN Zhong-qiang, ZHANG Yan-sheng, WANG Jun, CAMPBELL Maurice, QIN Wen-qing. Column bioleaching of a low grade nickel-bearing sulfide ore containing high magnesium as olivine, chlorite and antigorite [J]. Hydrometallurgy, 2009, 96(4): 337–341. DOI: 10.1016/j.hydromet.2008.11.007.

    Article  Google Scholar 

  24. QIN Wen-qing, ZHEN Shi-jie, YAN Zhong-qiang, CAMPBELL M, WANG Jun, LIU Kai, ZHANG Yan-sheng. Heap bioleaching of a low-grade nickel-bearing sulfide ore containing high levels of magnesium as olivine, chlorite and antigorite [J]. Hydrometallurgy, 2009, 98(1): 58–65. DOI: 10.1016/j.hydromet.2009.03.017.

    Article  Google Scholar 

  25. ZHEN Shi-jie, QIN Wen-qing, YAN Zhong-qiang, ZHANG Yan-sheng, WANG Jun, REN Liu-yi. Bioleaching of low grade nickel sulfide mineral in column reactor [J]. Transactions of Nonferrous Metals Society of China, 2008, 18(6): 1480–1484. DOI: 10.1016/S1003-6326(09)60029-7.

    Article  Google Scholar 

  26. LAN Zhuo-yue, HU Yue-hua, LIU Jian-she, WANG Jun. Solvent extraction of copper and zinc from bioleaching solutions with LIX984 and D2EHPA [J]. Journal of Central South University of Technology, 2005, 12(1): 45–49. DOI: 10.1007/s11771-005-0201-z.

    Article  Google Scholar 

  27. KLAUBER C. Fracture-induced reconstruction of a chalcopyrite (CuFeS2) surface [J]. Surface and Interface Analysis, 2003, 35(5): 415–428. DOI: 10.1002/sia.1539.

    Article  Google Scholar 

  28. HE Huan, XIA Jin-lan, YANG Yi, JIANG Hong-chen, XIAO Chun-qiao, ZHENG Lei, MA Chen-yan, ZHAO Yi-dong, QIU Guan-zhou. Sulfur speciation on the surface of chalcopyrite leached by Acidianus manzaensis [J]. Hydrometallurgy, 2009, 99(1, 2): 45–50. DOI: 10.1016/j.hydromet.2009.06.004.

    Article  Google Scholar 

  29. PANDA S, PARHI P K, NAYAK B D, PRADHAN N, MOHAPATRA U B, SUKLA L B. Two step meso-acidophilic bioleaching of chalcopyrite containing ball mill spillage and removal of the surface passivation layer [J]. Bioresource Technology, 2013, 130: 332–338. DOI: 10.1016/j.biortech.2012.12.071.

    Article  Google Scholar 

  30. ZHAO Hong-bo, WANG Jun, QIN Wen-qing, HU Ming-hao, ZHU Shan, QIU Guan-zhou. Electrochemical dissolution process of chalcopyrite in the presence of mesophilic microorganisms [J]. Minerals Engineering, 2015, 71: 159–169. DOI: 10.1016/j.mineng.2014.10.025.

    Article  Google Scholar 

  31. ZHAO Hong-bo, GAN Xiao-wen, WANG Jun, TAO Lang, QIN Wen-qing, QIU Guan-zhou. Stepwise bioleaching of Cu-Zn mixed ores with comprehensive utilization of silver-bearing solid waste through a new technique process [J]. Hydrometallurgy, 2017, 171: 374–386. DOI: 10.1016/j.hydromet.2017.06.002.

    Article  Google Scholar 

  32. ZHAO Hong-bo, HUANG Xiao-tao, WANG Jun, LI Yi-ni, LIAO Rui, WANG Xing-xing, QIU Xiao, XIONG Yu-ming, QIN Wen-qing, QIU Guan-zhou. Comparison of bioleaching and dissolution process of p-type and n-type chalcopyrite [J]. Minerals Engineering, 2017, 109: 153–161. DOI: 10.1016/j.mineng.2017.03.013.

    Article  Google Scholar 

  33. ZHAO Hong-bo, WANG Jun, GAN Xiao-wen, HU Ming-hao, ZHANG Er-xing, QIN Wen-qing, QIU Guan-zhou. Cooperative bioleaching of chalcopyrite and silver-bearing tailing by mixed moderately thermophilic culture: An emphasis on the chalcopyrite dissolution with XPS and electrochemical analysis [J]. Minerals Engineering, 2015, 81: 29–39. DOI: 10.1016/j.mineng.2015.07.015.

    Article  Google Scholar 

  34. QIN Wen-qing, ZHANG Yan-sheng, ZHEN Shi-jie, WANG Jun, ZHANG Jian-wen, QIU Guan-zhou. Bioleaching of low-grade copper sulfide ore using a column reactor [J]. Advanced Materials Research, 2009, 71-73: 409–412. DOI: 10.4028/www.scientific.net/AMR.71-73.409.

    Article  Google Scholar 

  35. GERICKE M, GOVENDER Y, PINCHES A. Tank bioleaching of low-grade chalcopyrite concentrates using redox control [J]. Hydrometallurgy, 2010, 104(3, 4): 414–419. DOI: 10.1016/j.hydromet.2010.02.024.

    Article  Google Scholar 

  36. WANG Jun, TAO Lang, ZHAO Hong-bo, HU Ming-hao, ZHENG Xi-hua, PENG Hong, GAN Xiao-wen, XIAO Wei, CAO Pan, QIN Wen-qin, QIU Guan-zhou, WANG Dian-zuo. Cooperative effect of chalcopyrite and bornite interactions during bioleaching by mixed moderately thermophilic culture [J]. Minerals Engineering, 2016, 95: 116–123. DOI: 10.1016/j.mineng.2016.06.006.

    Article  Google Scholar 

  37. OLSON G J, BRIERLEY J A, BRIERLEY C L. Bioleaching review part B: Progress in bioleaching: Applications of microbial processes by the minerals industries [J]. Applied Microbiology and Biotechnology, 2003, 63(3): 249–257. DOI: 10.1007/s00253-003-1404-6.

    Article  Google Scholar 

  38. ROHWERDER T, GEHRKE T, KINZLER K, SAND W. Bioleaching review part A: Progress in bioleaching: Fundamentals and mechanisms of bacterial metal sulfide oxidation [J]. Applied Microbiology and Biotechnology, 2003, 63(3): 239–248. DOI: 10.1007/s00253-003-1448-7.

    Article  Google Scholar 

  39. BRIERLEY C L, BRIERLEY J A. Progress in bioleaching: Part B: Applications of microbial processes by the minerals industries [J]. Applied Microbiology and Biotechnology, 2013, 97(17): 7543–7552. DOI: 10.1007/s00253-013-5095-3.

    Article  Google Scholar 

  40. WANG Xing-xing, LIAO Rui, ZHAO Hong-bo, HONG Mao-xing, HUANG Xiao-tao, PENG Hong, WEN Wen, QIN Wen-qing, QIU Guan-zhou, HUANG Cao-ming, WANG Jun. Synergetic effect of pyrite on strengthening bornite bioleaching by Leptospirillum ferriphilum [J]. Hydrometallurgy, 2018, 176: 9–16. DOI: 10.1016/j.hydromet.2017.12.003.

    Article  Google Scholar 

  41. WANG Jun, ZHAO Hong-bo, QIN Wen-qing, QIU Guan-zhou. Bioleaching of complex polymetallic sulfide ores by mixed culture [J]. Journal of Central South University, 2014, 21(7): 2633–2637. DOI: 10.1007/s11771-014-2223-x.

    Article  Google Scholar 

  42. WANG Jun, ZHAO Hong-bo, ZHUANG Tian, QIN Wen-qing, ZHU Shan, QIU Guan-zhou. Bioleaching of Pb-Zn-Sn chalcopyrite concentrate in tank bioreactor and microbial community succession analysis [J]. Transactions of Nonferrous Metals Society of China, 2013, 23(12): 3758–3762. DOI: 10.1016/s1003-6326(13)62926-x.

    Article  Google Scholar 

  43. CHEN Bo-wei, WU Biao, LIU Xing-yu, WEN Jian-kang. Comparison of microbial diversity during column bioleaching of chalcopyrite at different temperatures [J]. Journal of Basic Microbiology, 2014, 54(6): 491–499. DOI: 10.1002/jobm.201300092.

    Article  Google Scholar 

  44. GU Guo-hua, HU Ke-ting, LI Shuang-ke. Bioleaching and electrochemical properties of chalcopyrite by pure and mixed culture of Leptospirillum ferriphilum and Acidthiobacillus thiooxidans [J]. Journal of Central South University, 2013, 20(1): 178–183. DOI: 10.1007/s11771-013-1474-2.

    Article  Google Scholar 

  45. HUANG Yu-lin, ZHANG Yi-sheng, ZHAO Hong-bo, ZHANG Yan-jun, XIONG Yu-ming, ZHANG Lu-yuan, ZHOU Jun, WANG Jun, QIN Wen-qing, QIU Guan-zhou. Bioleaching of chalcopyrite-bornite and chalcopyrite-pyrite mixed ores in the presence of moderately thermophilic microorganisms [J]. International Journal of Electrochemical Science, 2017, 12(11): 10493–10510. DOI: 10.20964/2017.11.33.

    Article  Google Scholar 

  46. LIANG Yu-ting, ZHU Shan, WANG Jun, AI Chen-bing, QIN Wen-qing. Adsorption and leaching of chalcopyrite by Sulfolobus metallicus YN24 cultured in the distinct energy sources [J]. International Journal of Minerals, Metallurgy, and Materials, 2015, 2(6): 549–552. DOI: 10.1007/s12613-015-1106-y.

    Article  Google Scholar 

  47. QIN Wen-qing, LIU Kai, DIAO Meng-xue, WANG Jun, ZHANG Yan-sheng, YANG Cong-ren, JIAO Fen. Oxidation of arsenite (As(III)) by ferric iron in the presence of pyrite and a mixed moderately thermophilic culture [J]. Hydrometallurgy, 2013, 137: 53–59. DOI: 10.1016/j.hydromet.2013.05.011.

    Article  Google Scholar 

  48. RODRIGUEZ Y, BALLESTER A, BLAZQUEZ M L, GONZALEZ F, MUNOZ J A. Study of bacterial attachment during the bioleaching of pyrite, chalcopyrite, and sphalerite [J]. Geomicrobiology Journal, 2003, 20(2): 131–141. DOI: 10.1080/01490450390193246.

    Article  Google Scholar 

  49. MOUSAVI S M, YAGHMAEI S, VOSSOUGHI M, JAFARI A. Efficiency of copper bioleaching of two mesophilic and thermophilic bacteria isolated from chalcopyrite concentrate of kerman-yazd regions in Iran [J]. Scientia Iranica, 2007, 14(2): 180–184.

    Google Scholar 

  50. MARHUAL N P, PRADHAN N, KAR R N, SUKLA L B, MISHRA B. Differential bioleaching of copper by mesophilic and moderately thermophilic acidophilic consortium enriched from same copper mine water sample [J]. Bioresource Technology, 2008, 99(17): 8331–8336. DOI: 10.1016/j.biortech.2008.03.003.

    Article  Google Scholar 

  51. AHMADI A, SCHAFFIE M, MANAFI Z, RANJBAR M. Electrochemical bioleaching of high grade chalcopyrite flotation concentrates in a stirred bioreactor [J]. Hydrometallurgy, 2010, 104(1): 99–105. DOI: 10.1016/j.hydromet.2010.05.001.

    Article  Google Scholar 

  52. LEE J, ACAR S, DOERR D L, BRIERLEY J A. Comparative bioleaching and mineralogy of composited sulfide ores containing enargite, covellite and chalcocite by mesophilic and thermophilic microorganisms [J]. Hydrometallurgy, 2011, 105(3, 4): 213–221. DOI: 10.1016/j.hydromet.2010.10.001.

    Article  Google Scholar 

  53. TUPIKINA O V, MINNAAR S H, van HILLE R P, van WYK N, RAUTENBACH G F, DEW D, HARRISON S T L. Determining the effect of acid stress on the persistence and growth of thermophilic microbial species after mesophilic colonisation of low grade ore in a heap leach environment [J]. Minerals Engineering, 2013, 53: 152–159. DOI: 10.1016/j.mineng.2013.07.015.

    Article  Google Scholar 

  54. ABDOLLAHI H, SHAFAEI S Z, NOAPARAST M, MANAFI Z, NIEMELA S I, TUOVINEN O H. Mesophilic and thermophilic bioleaching of copper from a chalcopyrite-containing molybdenite concentrate [J]. International Journal of Mineral Processing, 2014, 128: 25–32. DOI: 10.1016/j.minpro.2014.02.003.

    Article  Google Scholar 

  55. TUPIKINA O V, MINNAAR S H, RAUTENBACH G F, DEW D W, HARRISON S T L. Effect of inoculum size on the rates of whole ore colonisation of mesophilic, moderate thermophilic and thermophilic acidophiles [J]. Hydrometallurgy, 2014, 149: 244–251. DOI: 10.1016/j.hydromet.2013.10.010.

    Article  Google Scholar 

  56. NIE Zhen-yuan, LIU Hong-chang, XIA Jin-lan, YANG Yi, ZHEN Xiang-jun, ZHANG Li-juan, QIU Guan-zhou. Evidence of cell surface iron speciation of acidophilic iron-oxidizing microorganisms in indirect bioleaching process [J]. Biometals, 2016, 29(1): 25–37. DOI: 10.1007/s10534-015-9893-1.

    Article  Google Scholar 

  57. AKCIL A, CIFTCI H, DEVECI H. Role and contribution of pure and mixed cultures of mesophiles in bioleaching of a pyritic chalcopyrite concentrate [J]. Minerals Engineering, 2007, 20(3): 310–318. DOI: 10.1016/j.mineng.2006.10.016.

    Article  Google Scholar 

  58. ABDOLLAHI H, NOAPARAST M, SHAFAEI S Z, MANAFI Z, MUNOZ J A, TUOVINEN O H. Silver-catalyzed bioleaching of copper, molybdenum from a chalcopyrite-molybdenite concentrate [J]. International Biodeterioration & Biodegradation, 2015, 104: 194–200. DOI: 10.1016/j.ibiod.2015.05.025.

    Article  Google Scholar 

  59. YANG Yi, HARMER S, CHEN Miao. Synchrotron X-ray photoelectron spectroscopic study of the chalcopyrite leached by moderate thermophiles and mesophiles [J]. Minerals Engineering, 2014, 69: 185–195. DOI: 10.1016/j.mineng.2014.08.011.

    Article  Google Scholar 

  60. BOXALL N J, REA S, LI Jian, MORRIS C, KAKSONEN A H. Effect of high sulfate concentrations on chalcopyrite bioleaching and molecular characterisation of the bioleaching microbial community [J]. Hydrometallurgy, 2017, 168: 32–39. DOI: 10.1016/j.hydromet.2016.07.006.

    Article  Google Scholar 

  61. SANDSTRÖM Å, SHCHUKAREV A, PAUL J. XPS characterisation of chalcopyrite chemically and bio-leached at high and low redox potential [J]. Minerals Engineering, 2005, 18(5): 505–515. DOI: 10.1016/j.mineng.2004.08.004.

    Article  Google Scholar 

  62. RUBIO A, FRUTOS F J G. Bioleaching capacity of an extremely thermophilic culture for chalcopyritic materials [J]. Minerals Engineering, 2002, 15(9): 689–694. DOI: 10.1016/S0892-6875(02)00124-3.

    Article  Google Scholar 

  63. D'HUGUES P, FOUCHER S, GALLÉ-CAVALLONI P, MORIN D. Continuous bioleaching of chalcopyrite using a novel extremely thermophilic mixed culture [J]. International Journal of Mineral Processing, 2002, 66(1-4): 107–119. DOI: 10.1016/S0301-7516(02)00004-2.

    Article  Google Scholar 

  64. GERICKE M, PINCHES A, ROOYEN J V V. Bioleaching of a chalcopyrite concentrate using an extremely thermophilic culture [J]. International Journal of Mineral Processing, 2001, 62(1-4): 243–255. DOI: 10.1016/S0301-7516(00)00056-9.

    Article  Google Scholar 

  65. GÓMEZ E, BALLESTER A, GONZÁLEZ F, BLÁZQUEZ M L. Leaching capacity of a new extremely thermophilic microorganism, Sulfolobus rivotincti [J]. Hydrometallurgy, 1999, 52(3): 349–366. DOI: 10.1016/S0304-386X(99)00027-4.

    Article  Google Scholar 

  66. ZENG Wei-min, QIU Guan-zhou, ZHOU Hong-bo, PENG Juan-hua, CHEN Miao, TAN S N, CHAO Wei-liang, LIU Xue-duan, ZHANG Yan-sheng. Community structure and dynamics of the free and attached microorganisms during moderately thermophilic bioleaching of chalcopyrite concentrate [J]. Bioresource Technology, 2010, 101(18): 7068–7075. DOI: 10.1016/j.biortech.2010.04.003.

    Article  Google Scholar 

  67. WANG Jun, QIN Wen-qing, ZHANG Yan-sheng, YANG Cong-ren. Bacterial leaching of chalcopyrite and bornite with native bioleaching microorganism [J]. Transactions of Nonferrous Metals Society of China, 2008, 18(6): 1468–1472. DOI: 10.1016/S1003-6326(09)60027-3.

    Article  Google Scholar 

  68. ZHANG Yan-sheng, QIN Wen-qing, WANG Jun, ZHEN Shi-jie, YANG Cong-ren, ZHANG Jian-wen, NAI Shao-shi, QIU Guan-zhou. Bioleaching of chalcopyrite by pure and mixed culture [J]. Transactions of Nonferrous Metals Society of China, 2008, 18(6): 1491–1496. DOI: 10.1016/S1003-6326(09)60031-5.

    Article  Google Scholar 

  69. HU Ke-ting, GU Guo-hua, LI Shuang-ke, QIU Guan-zhou. Bioleaching of chalcopyrite by Leptospirillum ferriphilum [J]. Journal of Central South University, 2012, 19(6): 1718–1723. DOI: 10.1007/s11771-012-1198-8.

    Article  Google Scholar 

  70. WANG Jun, QIU Guan-zhou, QIN Wen-qing, ZHANG Yan-sheng. Microbial leaching of marmatite by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans [J]. Transactions of Nonferrous Metals Society of China, 2006, 16(4): 937–942. DOI: 10.1016/S1003-6326(06)60355-5.

    Article  Google Scholar 

  71. WATLING H R. The bioleaching of sulphide minerals with emphasis on copper sulphides — A review [J]. Hydrometallurgy, 2006, 84(1, 2): 81–108. DOI: 10.1016/j.hydromet.2006.05.001.

    Article  Google Scholar 

  72. YIN Sheng-hua, WANG Lei-ming, KABWE E, CHEN Xun, YAN Rong-fu, AN Kai, ZHANG Lei, WU Ai-xiang. Copper bioleaching in China: Review and prospect [J]. Minerals, 2018, 8(2): 32. DOI: 10.3390/min8020032.

    Article  Google Scholar 

  73. FANG Jing-hua, LIU Yong, HE Wan-li, QIN Wen-qing, QIU Guan-zhou, WANG Jun. Transformation of iron in pure culture process of extremely acidophilic microorganisms [J]. Transactions of Nonferrous Metals Society of China, 2017, 27(5): 1150–1155. DOI: 10.1016/s1003-6326(17)60134-1.

    Article  Google Scholar 

  74. BRIERLEY C L, BRIERLEY J A. Progress in bioleaching: Part B: Applications of microbial processes by the minerals industries [J]. Applied Microbiology and Biotechnology, 2013, 97(17): 7543–7552. DOI: 10.1007/s00253-013-5095-3

    Article  Google Scholar 

  75. DUTRIZAC J E. Elemental sulphur formation during the ferric sulphate leaching of chalcopyrite [J]. Canadian Metallurgical Quarterly, 1989, 28(4): 337–344. DOI: 10.1179/cmq.1989.28.4.337.

    Article  Google Scholar 

  76. ZHAO Hong-bo, ZHANG Yi-sheng, ZHANG Xian, QIAN Lu, SUN Meng-lin, YANG Yu, ZHANG Yan-sheng, WANG Jun, KIM H, QIU Guan-zhou. The dissolution and passivation mechanism of chalcopyrite in bioleaching: An overview [J]. Minerals Engineering, 2019, 136: 140–154. DOI: 10.1016/j.mineng.2019.03.014.

    Article  Google Scholar 

  77. FU Kai-bin, LIN Hai, MO Xiao-lan, WANG Han, WEN Hong-wei, WEN Zi-long. Comparative study on the passivation layers of copper sulphide minerals during bioleaching [J]. International Journal of Minerals Metallurgy and Materials, 2012, 19(10): 886–892. DOI: 10.1007/s12613-012-0643-x.

    Article  Google Scholar 

  78. YANG Yi, HARMER S L, CHEN Miao. Synchrotron-based XPS and NEXAFS study of surface chemical species during electrochemical oxidation of chalcopyrite [J]. Hydrometallurgy, 2015, 156: 89–98. DOI: 10.1016/j.hydromet.2015.05.011.

    Article  Google Scholar 

  79. KLAUBER C. A critical review of the surface chemistry of acidic ferric sulphate dissolution of chalcopyrite with regards to hindered dissolution [J]. International Journal of Mineral Processing, 2008, 86(1-4): 1–17. DOI: 10.1016/j.minpro.2007.09.003.

    Article  Google Scholar 

  80. YANG Bao-jun, ZHAO Chun-xiao, LUO Wen, LIAO Rui, GAN Min, WANG Jun, LIU Xue-duan, QIU Guan-zhou. Catalytic effect of silver on copper release from chalcopyrite mediated by Acidithiobacillus ferrooxidans [J]. Journal of Hazardous Materials, 2020, 392: 122290. DOI: 10.1016/j.jhazmat.2020.122290.

    Article  Google Scholar 

  81. YANG Bao-jun, LIN Mo, FANG Jing-hua, ZHANG Rui-yong, LUO Wen, WANG Xing-xing, LIAO Rui, WU Bai-qiang, WANG Jun, GAN Min. Combined effects of jarosite and visible light on chalcopyrite dissolution mediated by Acidithiobacillus ferrooxidans [J]. Science of the Total Environment, 2020, 698: 134175. DOI: 10.1016/j.scitotenv.2019.134175.

    Article  Google Scholar 

  82. YANG Yi, LIU Wei-hua, CHEN Miao. XANES and XRD study of the effect of ferrous and ferric ions on chalcopyrite bioleaching at 30 °C and 48 °C [J]. Minerals Engineering, 2015, 70: 99–108. DOI: 10.1016/j.mineng.2014.08.021.

    Article  Google Scholar 

  83. YANG Yi, LIU Wei-hua, CHEN Miao. A copper and iron K-edge XANES study on chalcopyrite leached by mesophiles and moderate thermophiles [J]. Minerals Engineering, 2013, 48: 31–35. DOI: 10.1016/j.mineng.2013.01.010.

    Article  Google Scholar 

  84. WANG Jun, GAN Xiao-wen, ZHAO Hong-bo, HU Ming-hao, LI Kai-yun, QIN Wen-qing, QIU Guan-zhou. Dissolution and passivation mechanisms of chalcopyrite during bioleaching: DFT calculation, XPS and electrochemistry analysis [J]. Minerals Engineering, 2016, 98: 264–278. DOI: 10.1016/j.mineng.2016.09.008.

    Article  Google Scholar 

  85. WU Shi-fa, YANG Cong-ren, QIN Wen-qing, JIAO Fen, WANG Jun, ZHANG Yan-sheng. Sulfur composition on surface of chalcopyrite during its bioleaching at 50 °C [J]. Transactions of Nonferrous Metals Society of China, 2015, 25(12): 4110–4118. DOI: 10.1016/s1003-6326(15)64062-6.

    Article  Google Scholar 

  86. KHOSHKHOO M, DOPSON M, SHCHUKAREV A, SANDSTROM A. Chalcopyrite leaching and bioleaching: An X-ray photoelectron spectroscopic (XPS) investigation on the nature of hindered dissolution [J]. Hydrometallurgy, 2014, 149: 220–227. DOI: 10.1016/j.hydromet.2014.08.012.

    Article  Google Scholar 

  87. LIU Hong-chang, XIA Jin-lan, NIE Zhen-yuan. Relatedness of Cu and Fe speciation to chalcopyrite bioleaching by Acidithiobacillus ferrooxidans [J]. Hydrometallurgy, 2015, 156: 40–46. DOI: 10.1016/j.hydromet.2015.05.013.

    Article  Google Scholar 

  88. ZHAO Hong-bo, WANG Jun, HU Ming-hao, QIN Wen-qing, ZHANG Yan-sheng, QIU Guan-zhou. Synergistic bioleaching of chalcopyrite and bornite in the presence of Acidithiobacillus ferrooxidans [J]. Bioresource Technology, 2013, 149(4): 71–76. DOI: 10.1016/j.biortech.2013.09.035.

    Article  Google Scholar 

  89. LI Yu-biao, QIAN Gu-jie, LI Jun, GERSON A R. Kinetics and roles of solution and surface species of chalcopyrite dissolution at 650 mV [J]. Geochimica et Cosmochimica Acta, 2015, 161: 188–202. DOI: 10.1016/j.gca.2015.04.012.

    Article  Google Scholar 

  90. ZHAO Hong-bo, WANG Jun, QIN Wen-qing, HU Ming-hao, QIU Guan-zhou. Electrochemical dissolution of chalcopyrite concentrates in stirred reactor in the presence of Acidithiobacillus ferrooxidans [J]. International Journal of Electrochemical Science, 2015, 10(1): 848–858. DOI: 10.1.1.666.6424.

    Google Scholar 

  91. YANG Yi, HARMER S, CHEN Miao. Synchrotron-based XPS and NEXAF study of surface chemical species during electrochemical oxidation of chalcopyrite [J]. Hydrometallurgy, 2015, 156: 89–98. DOI: 10.1016/j.hydromet.2015.05.011.

    Article  Google Scholar 

  92. YU Run-lan, ZHONG Dai-li, MIAO Lei, WU Fa-deng, QIU Guan-zhou, GU Guo-hua. Relationship and effect of redox potential, jarosites and extracellular polymeric substances in bioleaching chalcopyrite by Acidithiobacillus ferrooxidans [J]. Transactions of Nonferrous Metals Society of China, 2011, 21(7): 1634–1640. DOI: 10.1016/s1003-6326(11)60907-2.

    Article  Google Scholar 

  93. KAPLUN K, LI Jian-chun, KAWASHIMA N, GERSON A R. Cu and Fe chalcopyrite leach activation energies and the effect of added Fe3+ [J]. Geochimica et Cosmochimica Acta, 2011, 75(20): 5865–5878. DOI: 10.1016/j.gca.2011.07.003.

    Article  Google Scholar 

  94. LI Jian-chun, KAWASHIMA N, KAPLUN K, ABSOLON V J, GERSON A R. Chalcopyrite leaching: The rate controlling factors [J]. Geochimica et Cosmochimica Acta, 2010, 74(10): 2881–2893. DOI: 10.1016/j.gca.2010.02.029.

    Article  Google Scholar 

  95. YANG Cong-ren, QIN Wen-qing, ZHAO Hong-bo, WANG Jun, WANG Xing-jie. Mixed potential plays a key role in leaching of chalcopyrite: Experimental and theoretical analysis [J]. Industrial & Engineering Chemistry Research, 2018, 57(5): 1733–1744. DOI: 10.1021/acs.iecr.7b02051.

    Article  Google Scholar 

  96. WANG Jun, LIAO Rui, TAO Lang, ZHAO Hong-bo, ZHAI Rui, QIN Wen-qing, QIU Guan-zhou. A comprehensive utilization of silver-bearing solid wastes in chalcopyrite bioleaching [J]. Hydrometallurgy, 2017, 169: 152–157. DOI: 10.1016/j.hydromet.2017.01.006.

    Article  Google Scholar 

  97. KHOSHKHOO M, DOPSON M, ENGSTRÖM F, SANDSTRÖM Å. New insights into the influence of redox potential on chalcopyrite leaching behaviour [J]. Minerals Engineering, 2017, 100: 9–16. DOI: 10.1016/j.mineng.2016.10.003.

    Article  Google Scholar 

  98. CORDOBA E M, MUÑOZ J A, BLÁZQUEZ M L, GONZÁLEZ F, BALLESTER A. Leaching of chalcopyrite with ferric ion. Part IV: The role of redox potential in the presence of mesophilic and thermophilic bacteria [J]. Hydrometallurgy, 2008, 93: 106–115. DOI: 10.1016/j.hydromet.2007.11.005.

    Article  Google Scholar 

  99. KHOSHKHOO M, DOPSON M, SHCHUKAREV A, SANDSTROM A. Electrochemical simulation of redox potential development in bioleaching of a pyritic chalcopyrite concentrate [J]. Hydrometallurgy, 2014, 144: 7–14. DOI: 10.1016/j.hydromet.2013.12.003.

    Article  Google Scholar 

  100. LOTFALIAN M, RANJBAR M, FAZAELIPOOR M H, SCHAFFIE M, MANAFI Z. The effect of redox control on the continuous bioleaching of chalcopyrite concentrate [J]. Minerals Engineering, 2015, 81: 52–57. DOI: 10.1016/j.mineng.2015.07.006.

    Article  Google Scholar 

  101. QIN Wen-qing, YANG Cong-ren, WANG Jun, ZHANG Yan-sheng, JIAO Fen, ZHAO Hong-bo, ZHU Shan. Effect of Fe2+ and Cu2+ ions on the electrochemical behavior of massive chalcopyrite in bioleaching system [J]. Advanced Materials Research, 2013, 825: 472–476. DOI: 10.4028/www.scientific.net/AMR.825.472.

    Article  Google Scholar 

  102. HIROYOSHI N, TSUNEKAWA M, OKAMOTO H, NAKAYAMA R, KUROIWA S. Improved chalcopyrite leaching through optimization of redox potential [J]. Canadian Metallurgical Quarterly, 2008, 47(3): 253–258. DOI: 10.1179/cmq.2008.47.3.253.

    Article  Google Scholar 

  103. HIROYOSHI N, KITAGAWA H, TSUNEKAWA M. Effect of solution composition on the optimum redox potential for chalcopyrite leaching in sulfuric acid solutions [J]. Hydrometallurgy, 2008, 91(1-4): 144–149. DOI: 10.1016/j.hydromet.2007.12.005.

    Article  Google Scholar 

  104. HIROYOSHI N, KUROIWA S, MIKI H, TSUNEKAWA M, HIRAJIMA T. Synergistic effect of cupric and ferrous ions on active-passive behavior in anodic dissolution of chalcopyrite in sulfuric acid solutions [J]. Hydrometallurgy, 2004, 74(1, 2): 103–116. DOI: 10.1016/j.hydromet.2004.01.003.

    Article  Google Scholar 

  105. HIROYOSHI N, KUROIWA S, MIKI H, TSUNEKAWA M, HIRAJIMA T. Effects of coexisting metal ions on the redox potential dependence of chalcopyrite leaching in sulfuric acid solutions [J]. Hydrometallurgy, 2007, 87(1, 2): 1–10. DOI: 10.1016/j.hydromet.2006.07.006.

    Article  Google Scholar 

  106. HIROYOSHI N, MIKI H, HIRAJIMA T, TSUNEKAWA M. Enhancement of chalcopyrite leaching by ferrous ions in acidic ferric sulfate solutions [J]. Hydrometallurgy, 2001, 60(3): 185–197. DOI: 10.1016/s0304-386x(00)00155-9.

    Article  Google Scholar 

  107. PETERSEN J, DIXON D G. Competitive bioleaching of pyrite and chalcopyrite [J]. Hydrometallurgy, 2006, 83(1-4): 40–49. DOI: 10.1016/j.hydromet.2006.03.036.

    Article  Google Scholar 

  108. THIRD K A, CORD-RUWISCH R, WATLING H R. Control of the redox potential by oxygen limitation improves bacterial leaching of chalcopyrite [J]. Biotechnology and Bioengineering, 2002, 78(4): 433–441. DOI: 10.1002/bit.10184.

    Article  Google Scholar 

  109. ZHAO Hong-bo, WANG Jun, YANG Cong-ren, HU Ming-hao, GAN Xiao-wen, TAO Lang, QIN Wen-qing, QIU Guan-zhou. Effect of redox potential on bioleaching of chalcopyrite by moderately thermophilic bacteria: An emphasis on solution compositions [J]. Hydrometallurgy, 2015, 151: 141–150. DOI: 10.1016/j.hydromet.2014.11.009.

    Article  Google Scholar 

  110. BEVILAQUA D, LAHTI-TOMMILA H, GARCIA O Jr, PUHAKKA J A, TUOVINEN O H. Bacterial and chemical leaching of chalcopyrite concentrates as affected by the redox potential and ferric/ferrous iron ratio at 22 °C [J]. International Journal of Mineral Processing, 2014, 132: 1–7. DOI: 10.1016/j.minpro.2014.08.008.

    Article  Google Scholar 

  111. QIN Wen-qing, YANG Cong-ren, LAI Shao-shi, WANG Jun, KAI Liu, BO Zhang. Bioleaching of chalcopyrite by moderately thermophilic microorganisms [J]. Bioresource Technology, 2013, 129(2): 200–208. DOI: 10.1016/j.biortech.2012.11.050.

    Article  Google Scholar 

  112. DELAUNE R D, REDDY K R. Encyclopedia of soils in the environment [M]. Elsevier, 2005. DOI: 10.1016/B0-12-348530-4/00212-5.

    Google Scholar 

  113. VANLOON G W, DUFFY S J. Environmental chemistry: A global perspective [M]. Oxford: Oxford University Press, 2010.

    Google Scholar 

  114. HIROYOSHI N, MIKI H, HIRAJIMA T, TSUNEKAWA M. A model for ferrous-promoted chalcopyrite leaching [J]. Hydrometallurgy, 2000, 57(1): 31–38. DOI: 10.1016/s0304-386x(00)00089-x.

    Article  Google Scholar 

  115. ELSHERIEF A E. The influence of cathodic reduction, Fe2+ and Cu2+ ions on the electrochemical dissolution of chalcopyrite in acidic solution [J]. Minerals Engineering, 2002, 15(4): 215–223. DOI: 10.1016/s0892-6875(01)00208-4.

    Article  Google Scholar 

  116. GU Guo-hua, HU Ke-ting, ZHANG Xun, XIONG Xian-xue, YANG Hui-sha. The stepwise dissolution of chalcopyrite bioleached by Leptospirillum ferriphilum [J]. Electrochimica Acta, 2013, 103: 50–57. DOI: 10.1016/j.electacta.2013.04.051.

    Article  Google Scholar 

  117. GU Guo-hua, XIONG Xian-xue, HU Ke-ting, LI Shuang-ke, WANG Chong-qing. Stepwise dissolution of chalcopyrite bioleaching by thermophile A.manzaensis and mesophile L.ferriphilum [J]. Journal of Central South University, 2015, 22(10): 3751–3759. DOI: 10.1007/s11771-015-2919-6.

    Article  Google Scholar 

  118. ZHAO Hong-bo, HU Ming-hao, LI Yi-ni, ZHU Shan, QIN Wen-qing, QIU Guan-zhou, WANG Jun. Comparison of electrochemical dissolution of chalcopyrite and bornite in acid culture medium [J]. Transactions of Nonferrous Metals Society of China, 2015, 25(1): 303–313. DOI: 10.1016/S1003-6326(15)63605-6.

    Article  Google Scholar 

  119. LIU Hong-chang, NIE Zhen-yuan, XIA Jin-lan, ZHU Hong-rui, YANG Yun, ZHAO Chang-hui, ZHENG Lei, ZHAO Yi-dong. Investigation of copper, iron and sulfur speciation during bioleaching of chalcopyrite by moderate thermophile Sulfobacillus thermosulfidooxidans [J]. International Journal of Mineral Processing, 2015, 137: 1–8. DOI: 10.1016/j.minpro.2015.02.008.

    Article  Google Scholar 

  120. ZENG Wei-min, QIU Guan-zhou, CHEN Miao. Investigation of Cu-S intermediate species during electrochemical dissolution and bioleaching of chalcopyrite concentrate [J]. Hydrometallurgy, 2013, 134: 158–165. DOI: 10.1016/j.hydromet.2013.02.009.

    Article  Google Scholar 

  121. WOODS R, YOON R H, YOUNG C A. Eh-pH diagrams for stable and metastable phases in the copper-sulfur-water system [J]. International Journal of Mineral Processing, 1987, 20(1, 2): 109–120. DOI: 10.1016/0301-7516(87)90020-2.

    Article  Google Scholar 

  122. LEE M S, NICOL M J, BASSON P. Cathodic processes in the leaching and electrochemistry of covellite in mixed sulfate-chloride media [J]. Journal of Applied Electrochemistry, 2008, 38(3): 363–369. DOI: 10.1007/s10800-007-9447-5.

    Article  Google Scholar 

  123. HIROYOSHI N, ARAI M, MIKI H, TSUNEKAWA M, HIRAJIMA T. A new reaction model for the catalytic effect of silver ions on chalcopyrite leaching in sulfuric acid solutions [J]. Hydrometallurgy, 2002, 63(3): 257–267. DOI: 10.1016/s0304-386x(01)00228-6.

    Article  Google Scholar 

  124. ARCE E A, GONZALEZ I. A comparative study of electrochemical behavior of chalcopyrite, chalcocite and bornite in sulfuric acid solution [J]. International Journal of Mineral Processing, 2002, 67(1-4): 17–28. DOI: 10.1016/s0301-7516(02)00003-0.

    Article  Google Scholar 

  125. VILCAEZ J, SUTO K, INOUE C. Bioleaching of chalcopyrite with thermophiles: Temperature-pH-ORP dependence [J]. International Journal of Mineral Processing, 2008, 88(1, 2): 37–44. DOI: 10.1016/j.minpro.2008.06.002.

    Article  Google Scholar 

  126. VILCAEZ J, YAMADA R, INOUE C. Effect of pH reduction and ferric ion addition on the leaching of chalcopyrite at thermophilic temperatures [J]. Hydrometallurgy, 2009, 96(1, 2): 62–71. DOI: 10.1016/j.hydromet.2008.08.003.

    Article  Google Scholar 

  127. LIANG Chang-li, XIA Jin-lan, YANG Yi, NIE Zhen-yuan, ZHAO Xiao-juan, ZHENG Lei, MA Chen-yan, ZHAO Yi-dong. Characterization of the thermo-reduction process of chalcopyrite at 65 °C by cyclic voltammetry and XANES spectroscopy [J]. Hydrometallurgy, 2011, 107(1, 2): 13–21. DOI: 10.1016/j.hydromet.2011.01.011.

    Article  Google Scholar 

  128. ZENG Wei-min, QIU Guan-zhou, ZHOU Hong-bo, CHEN Miao. Electrochemical behaviour of massive chalcopyrite electrodes bioleached by moderately thermophilic microorganisms at 48 °C [J]. Hydrometallurgy, 2011, 105(3, 4): 259–263. DOI: 10.1016/j.hydromet.2010.10.012.

    Article  Google Scholar 

  129. BEVILAQUA D, DIEZ-PEREZ I, FUGIVARA CS, SANZ F, BENEDETTI A V, GARCIA O. Oxidative dissolution of chalcopyrite by Acidithiobacillus ferrooxidans analyzed by electrochemical impedance spectroscopy and atomic force microscopy [J]. Bioelectrochemistry, 2004, 64(1): 79–84. DOI: 10.1016/j.bioelechem.2004.01.006.

    Article  Google Scholar 

  130. ZHAO Hong-bo, WANG Jun, QIN Wen-qing, ZHENG Xi-hua, TAO Lang, GAN Xiao-wen, QIU Guan-zhou. Surface species of chalcopyrite during bioleaching by moderately thermophilic bacteria [J]. Transactions of Nonferrous Metals Society of China, 2015, 25(8): 2725–2733. DOI: 10.1016/s1003-6326(15)63897-3.

    Article  Google Scholar 

  131. LIU Qing-you, CHEN Miao, YANG Yi. The effect of chloride ions on the electrochemical dissolution of chalcopyrite in sulfuric acid solutions [J]. Electrochimica Acta, 2017, 253: 257–267. DOI: 10.1016/j.electacta.2017.09.063.

    Article  Google Scholar 

  132. BEVILAQUA D, LAHTI-TOMMILA H, GARCIA O Jr, PUHAKKA J A, TUOVINEN O H. Bacterial and chemical leaching of chalcopyrite concentrates as affected by the redox potential and ferric/ferrous iron ratio at 22 °C [J]. International Journal of Mineral Processing, 2014, 132: 1–7. DOI: 10.1016/j.minpro.2014.08.008.

    Article  Google Scholar 

  133. GU Guo-hua, HU Ke-ting, LI Shuang-ke. Surface characterization of chalcopyrite interacting with Leptospirillum ferriphilum [J]. Transactions of Nonferrous Metals Society of China, 2014, 24(6): 1898–1904. DOI: 10.1016/s1003-6326(14)63269-6.

    Article  Google Scholar 

  134. CÓRDOBA E M, MUÑOZ J A, BLÁZQUEZ M L, GONZÁLEZ F, BALLESTER A. Leaching of chalcopyrite with ferric ion. Part III: Effect of redox potential on the silver-catalyzed process [J]. Hydrometallurgy, 2008, 93(3, 4): 97–105. DOI: 10.1016/j.hydromet.2007.11.006.

    Article  Google Scholar 

  135. CÓRDOBA E M, MUÑOZ J A, BLÁZQUEZ M L, GONZÁLEZ F, BALLESTER A. Leaching of chalcopyrite with ferric ion. Part II: Effect of redox potential [J]. Hydrometallurgy, 2008, 93(3, 4): 88–96. DOI: 10.1016/j.hydromet.2008.04.016.

    Article  Google Scholar 

  136. CORDOBA E M, MUNOZ J A, BLAZQUEZ M L, GONZALEZ F, BALLESTER A. Leaching of chalcopyrite with ferric ion. Part IV: The role of redox potential in the presence of mesophilic and thermophilic bacteria [J]. Hydrometallurgy, 2008, 93(3, 4): 106–115. DOI: 10.1016/j.hydromet.2007.11.005.

    Article  Google Scholar 

  137. ZHAO Hong-bo, WANG Jun, GAN Xiao-wen, HU Ming-hao, TAO Lang, QIN Wen-qing, QIU Guan-zhou. Role of pyrite in sulfuric acid leaching of chalcopyrite: An elimination of polysulfide by controlling redox potential [J]. Hydrometallurgy, 2016, 164: 159–165. DOI: 10.1016/j.hydromet.2016.04.013.

    Article  Google Scholar 

  138. ZHAO Hong-bo, WANG Jun, GAN Xiao-wen, QIN Wen-qing, HU Ming-hao, QIU Guan-zhou. Bioleaching of chalcopyrite and bornite by moderately thermophilic bacteria: An emphasis on their interactions [J]. International Journal of Minerals, Metallurgy, and Materials, 2015, 22(8): 777–787. DOI: 10.1007/s12613-015-1134-7.

    Article  Google Scholar 

  139. BARHOUMI N, OLVERAVARGAS H, OTURAN N, HUGUENOT D, GADRI A, AMMAR S, BRILLAS E, OTURAN M A. Kinetics of oxidative degradation/mineralization pathways of the antibiotic tetracycline by the novel heterogeneous electro-fenton process with solid catalyst chalcopyrite [J]. Applied Catalysis B-Environmental, 2017, 209: 637–647. DOI: 10.1016/j.apcatb.2017.03.034.

    Article  Google Scholar 

  140. HUANG Xiao-tao, ZHU Tong-he, DUAN Wei-jian, LIANG Sheng, LI Ge, XIAO Wei. Comparative studies on catalytic mechanisms for natural chalcopyrite-induced fenton oxidation: Effect of chalcopyrite type [J]. Journal of Hazardous Materials, 2020, 381: 120998. DOI: 10.1016/j.jhazmat.2019.120998.

    Article  Google Scholar 

  141. WU Biao, WEN Jian-kang, CHEN Bowei, YAO Guo-cheng, WANG Dian-zuo. Control of redox potential by oxygen limitation in selective bioleaching of chalcocite and pyrite [J]. Rare Metals, 2014, 33(5): 622–627. DOI: 10.1007/s12598-014-0364-6.

    Article  Google Scholar 

  142. CHANDRA A P, GERSON A R. The mechanisms of pyrite oxidation and leaching: A fundamental perspective [J]. Surface Science Reports, 2010, 65(9): 293–315. DOI: 10.1016/j.surfrep.2010.08.003.

    Article  Google Scholar 

  143. RUITENBERG R, HANSFORD G S, REUTER M A, BREED A W. The ferric leaching kinetics of arsenopyrite [J]. Hydrometallurgy, 1999, 52(1): 37–53. DOI: 10.1016/S0304-386X(99)00007-9.

    Article  Google Scholar 

  144. MAY N, RALPH D E, HANSFORD G S. Dynamic redox potential measurement for determining the ferric leach kinetics of pyrite [J]. Minerals Engineering, 1997, 10(11): 1279–1290. DOI: 10.1016/S0892-6875(97)00114-3.

    Article  Google Scholar 

  145. NICOL M, MIKI H, BASSON P. The effects of sulphate ions and temperature on the leaching of pyrite. 2. Dissolution rates [J]. Hydrometallurgy, 2013, 133: 182–187. DOI: 10.1016/j.hydromet.2013.01.009.

    Article  Google Scholar 

  146. CHANDRA A P, GERSON A R. Redox potential (Eh) and anion effects of pyrite (FeS2) leaching at pH 1 [J]. Geochimica et Cosmochimica Acta, 2011, 75(22): 6893–6911. DOI: 10.1016/j.gca.2011.09.020.

    Article  Google Scholar 

  147. SUN He-yun, CHEN Miao, ZOU Lai-chang, SHU Rong-bo, RUAN Ren-man. Study of the kinetics of pyrite oxidation under controlled redox potential [J]. Hydrometallurgy, 2015, 155: 13–19. DOI: 10.1016/j.hydromet.2015.04.003.

    Article  Google Scholar 

  148. WEI Zhen-lun, LI Yu-biao, GAO Hui-min, ZHU Yang-ge, QIAN Gu-jie, YAO Jun. New insights into the surface relaxation and oxidation of chalcopyrite exposed to O2 and H2O: A first-principles DFT study [J]. Applied Surface Science, 2019, 492: 89–98. DOI: 10.1016/j.apsusc.2019.06.191.

    Article  Google Scholar 

  149. ZHAO Hong-bo, WANG Jun, TAO Lang, CAO Pan, YANG Cong-ren, QIN Wen-qing, QIU Guan-zhou. Roles of oxidants and reductants in bioleaching system of chalcopyrite at normal atmospheric pressure and 45 °C [J]. International Journal of Mineral Processing, 2017, 162: 81–91. DOI: 10.1016/j.minpro.2017.04.002.

    Article  Google Scholar 

  150. WANG Jun, ZHU Shan, ZHANG Yan-sheng, ZHAO Hong-bo, HU Ming-hao, YANG Cong-ren, QIN Wen-qing, QIU Guan-zhou. Bioleaching of low-grade copper sulfide ores by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans [J]. Journal of Central South University, 2014, 21(2): 728–734. DOI: 10.1007/s11771-014-1995-3.

    Article  Google Scholar 

  151. YANG Yi, LIU Wei-hua, BHARGAVA S K, ZENG Wei-min, CHEN Miao. A XANE and XRD study of chalcopyrite bioleaching with pyrite [J]. Minerals Engineering, 2016, 89: 157–162. DOI: 10.1016/j.mineng.2016.01.019.

    Article  Google Scholar 

  152. YANG Y, TAN S N, GLENN A M, HARMER S, BHARGAVA S, CHEN M. A direct observation of bacterial coverage and biofilm formation by Acidithiobacillus ferrooxidans on chalcopyrite and pyrite surfaces [J]. Biofouling, 2015, 31(7): 575–586. DOI: 10.1080/08927014.2015.1073720.

    Article  Google Scholar 

  153. WU Biao, WEN Jian-kang, CHEN Bo-wei, YAO Guo-cheng, WANG Dian-zuo. Control of redox potential by oxygen limitation in selective bioleaching of chalcocite and pyrite [J]. Rare Metals, 2014, 33(5): 622–627. DOI: 10.1007/s12598-014-0364-6.

    Article  Google Scholar 

  154. LI Yu-biao, QIAN Gu-jie, BROWN P L, GERSON A R. Chalcopyrite dissolution: Scanning photoelectron microscopy examination of the evolution of sulfur species with and without added iron or pyrite [J]. Geochimica et Cosmochimica Acta, 2017, 212: 33–47. DOI: 10.1016/j.gca.2017.05.016.

    Article  Google Scholar 

  155. OLVERA O G, QUIROZ L, DIXON D G, ASSELIN E. Electrochemical dissolution of fresh and passivated chalcopyrite electrodes. Effect of pyrite on the reduction of Fe3+ ions and transport processes within the passive film [J]. Electrochimica Acta, 2014, 127: 7–19. DOI: 10.1016/j.electacta.2014.01.165.

    Article  Google Scholar 

  156. RUIZ M C, MONTES K S, PADILLA R. Galvanic effect of pyrite on chalcopyrite leaching in sulfate-chloride media [J]. Mineral Processing and Extractive Metallurgy Review, 2014, 36(1): 65–70. DOI: 10.1080/08827508.2013.868349.

    Article  Google Scholar 

  157. HAN Hai-sheng, SUN Wei, HU Yue-hua, CAO Xue-feng, TANG Hong-hu, LIU Run-qing, YUE Tong. Magnetite precipitation for iron removal from nickel-rich solutions in hydrometallurgy process [J]. Hydrometallurgy, 2016, 165: 318–322. DOI: 10.1016/j.hydromet.2016.01.006.

    Article  Google Scholar 

  158. YUE Tong, HAN Hai-sheng, SUN Wei, HU Yue-hua, CHEN Pan, LIU Run-qing. ow-pH mediated goethite precipitation and nickel loss in nickel hydrometallurgy [J]. Hydrometallurgy, 2016, 165: 238–243. DOI: 10.1016/j.hydromet.2016.03.004.

    Article  Google Scholar 

  159. HUANG Xiao-tao, ZHAO Hong-bo, ZHANG Yi-sheng, LIAO Rui, WANG Jun, QIN Wen-qing, QIU Guan-zhou. A strategy to accelerate the bioleaching of chalcopyrite through the goethite process [J]. Minerals & Metallurgical Processing, 2018, 35(4): 171–175. DOI: 10.19150/mmp.8593.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Wang  (王军).

Additional information

Foundation item: Projects(51774332, U1932129, 51804350, 51934009) supported by the National Natural Science Foundation of China; Project(2018JJ1041) supported by the Natural Science Foundation of Hunan Province, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Xt., Liao, R., Yang, Bj. et al. Role and maintenance of redox potential on chalcopyrite biohydrometallurgy: An overview. J. Cent. South Univ. 27, 1351–1366 (2020). https://doi.org/10.1007/s11771-020-4371-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-020-4371-5

Key words

关键词

Navigation