Skip to main content
Log in

Performance of a high-rate anammox reactor under high hydraulic loadings: Physicochemical properties, microbial structure and process kinetics

高负荷厌氧氨氧化反应器性能、微生物结构和过程动力学特性研究

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

In this study, a lab-scale upflow anaerobic sludge blanket (UASB) reactor was applied to studying the high-rate nitrogen removal of granule-based anammox process. The nitrogen removal rate (NRR) finally improved to 15.77 kg/m3/d by shortening hydraulic retention time (HRT) to 1.06 h. Well-shaped red anammox granules were extensively enriched inside the reactor. The results of nitrogen removal kinetics indicated that the present bioreactor has great nitrogen removal potential, because the maximum rate of substrate utilization (Umax) predicted by Stover-Kincannon model is suggested as 55.68 kg/(m3·d). Analysis of the microbial community showed that the anammox genus Candidatus Kuenenia dominated the bacterial communities. The relative abundance of Candidatus Kuenenia rose from 12.29% to 36.95% after progressively shorter HRT and higher influent substrate concentrations, illustrating the stability of nitrogen removal performance and biomass enrichment offered by the UASB in carrying out high-rate anammox process.

摘要

本文研究了上流式厌氧污泥床(UASB)中厌氧氨氧化工艺的脱氮性能、污泥性状、微生物群落 结构以及过程动力学特性。首先, 通过缩短水力停留时间并提高进水基质浓度, 研究了负荷提升过程 中UASB 反应器的脱氮性能, 并最终将反应器的总氮去除速率(NRR)提高到15.77 kg/(m3·d), 富集了 成熟的厌氧氨氧化颗粒污泥。其次, 选用3 种基质去除动力学模型对反应器稳态运行时期的数据进行 了拟合, 其中Stover-Kincannon 模型的结果表明UASB 的最大基质利用速率(Umax)可达55.68 kg/(m3·d)。 此外, 微生物群落结构分析的结果表明反应器在长期高负荷运行后, 占主导地位的脱氮细菌为 “Candidatus Kuenenia”属。随着脱氮性能的提高, 其相对丰度由12.29%提高到了36.95%, 颗粒污泥内 的厌氧氨氧化优势菌属的组成也发生了改变。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. DU Rui, CAO Shen-bin, LI Bai-kun, NIU Meng, WANG Shu-ying, PENG Yong-zhen. Performance and microbial community analysis of a novel DEAMOX based on partial-denitrification and anammox treating ammonia and nitrate wastewaters [J]. Water Research, 2017, 1: 46–56. DOI: https://doi.org/10.1016/j.watres.2016.10.051

    Article  Google Scholar 

  2. TANG Chong-jian, LIU Zhi-gong, PENG Chong, CHAI Li-yuan, KURODA K, OKIDO M, SONG Yu-xia. New insights into the interaction between heavy metals and struvite: Struvite as platform for heterogeneous nucleation of heavy metal hydroxide [J]. Chemical Engineering Journal, 2019, 1: 60–69. DOI: https://doi.org/10.1016/j.cej.2019.02.034.

    Article  Google Scholar 

  3. FENG Fan, DUAN Cheng-shan, TANG Xi, CHEN Xi, LU Xuan, CHAI Xi-lin, MAHMOOD Q, TANG Chong-jian, CHAI Li-yuan. Performance, microbial community and inhibition kinetics of long-term Cu2+ stress on an air-lift nitritation reactor with self-recirculation [J]. Journal of Environmental Sciences, 2020, 1: 117–127. DOI:https://doi.org/10.1016/j.jes.2020.01.021.

    Article  Google Scholar 

  4. OSHIKI M, SATOH H, OKABE S. Ecology and physiology of anaerobic ammonium oxidizing bacteria [J]. Environmental Microbiology, 2016, 18(9): 2784–2796. DOI: https://doi.org/10.1111/1462-2920.13134.

    Article  Google Scholar 

  5. KUYPERS M M M, MARCHANT H K, KARTAL B. The microbial nitrogen-cycling network [J]. Nature Reviews Microbiology, 2018, 16(5): 263–276. DOI: https://doi.org/10.1038/nrmicro.2018.9.

    Article  Google Scholar 

  6. YU Cheng, TANG Xi, LI Lu-shan, CHAI Xi-lin, XIAO Rui-yang, WU Di, TANG Chong-jian, CHAI Li-yuan. The long-term effects of hexavalent chromium on anaerobic ammonium oxidation process: Performance inhibition, hexavalent chromium reduction and unexpected nitrite oxidation [J]. Bioresource Technology, 2019, 1: 138–147. DOI: https://doi.org/10.1016/j.biortech.2019.03.081.

    Article  Google Scholar 

  7. XIE Guo-jun, LIU Tao, CAI Chen, HU Shi-hu, YUAN Zhi-guo. Achieving high-level nitrogen removal in mainstream by coupling anammox with denitrifying anaerobic methane oxidation in a membrane biofilm reactor [J]. Water Research, 2017, 1: 196–204. DOI: https://doi.org/10.1016/j.watres.2017.12.037

    Google Scholar 

  8. CAO Ye-shi, VAN LOOSDRECHT M C M, DAIGGER G T. Mainstream partial nitritation-anammox in municipal wastewater treatment: Status, bottlenecks, and further studies [J]. Applied Microbiology and Biotechnology, 2017, 101(4): 1365–1383. DOI: https://doi.org/10.1007/s00253-016-8058-7.

    Article  Google Scholar 

  9. ZHANG Lei, NARITA Y, GAO Lin, ALI M, OSHIKI M, OKABE S. Maximum specific growth rate of anammox bacteria revisited [J]. Water Research, 2017, 1: 296–303. DOI: https://doi.org/10.1016/j.watres.2017.03.027.

    Article  Google Scholar 

  10. JIN Ren-cun, YANG Guang-feng, YU Jin-jin, ZHENG Ping. The inhibition of the anammox process: A review [J]. Chemical Engineering Journal, 2012, 1: 67–79. DOI: https://doi.org/10.1016/j.cej.2012.05.014.

    Article  Google Scholar 

  11. SONG Yu-xia, CHAI Li-yuan, TANG Chong-jian, XIAO Rui-yang, LI Bing-rong, WU Di, MIN Xiao-bo. Influence of ZnO nanoparticles on anammox granules: The inhibition kinetics and mechanism analysis by batch assays [J]. Biochemical Engineering Journal, 2018, 1: 122–129. DOI:https://doi.org/10.1016/j.bej.2018.02.006.

    Article  Google Scholar 

  12. RAUDKIVI M, ZEKKER I, RIKMANN E, VABAMAE P, KROON K, TENNO T. Nitrite inhibition and limitation-the effect of nitrite spiking on anammox biofilm, suspended and granular biomass [J]. Water Science and Technology, 2017, 75(2): 313–321. DOI: https://doi.org/10.2166/wst.2016.456.

    Article  Google Scholar 

  13. ZHANG Yan-long, MA Hai-yuan, CHEN Rong, NIU Qi-gui, LI Yu-you. Stoichiometric variation and loading capacity of a high-loading anammox attached film expanded bed (AAEEB) reactor [J]. Bioresource Technology, 2018, 1: 130–140. DOI: https://doi.org/10.1016/j.biortech.2018.01.043.

    Google Scholar 

  14. JIN Ren-cun, ZHENG Ping. Kinetics of nitrogen removal in high rate anammox upflow filter [J]. Journal of Hazardous Materials, 2009, 170(2, 3): 652–656. DOI:https://doi.org/10.1016/j.jhazmat.2009.05.016.

    Article  Google Scholar 

  15. YIN Xin, QIAO Sen, ZHOU Ji-ti, TANG Xin. Fast start-up of the anammox process with addition of reduced graphene oxides [J]. Chemical Engineering Journal, 2016, 1: 160–166. DOI: https://doi.org/10.1016/j.cej.2015.07.059.

    Article  Google Scholar 

  16. MIAO Yuan-yuan, PENG Yong-zhen, ZHANG Liang, LI Bai-kun, LI Xi-yao, WU Lei, WANG Si-meng. Partial nitrification-anammox (PNA) treating sewage with intermittent aeration mode: Effect of influent C/N ratios [J]. Chemical Engineering Journal, 2017, 1: 664–672. DOI: https://doi.org/10.1016/j.cej.2017.10.072.

    Google Scholar 

  17. LIU Yu, XU Hai-lou, YANG Shu-fang, TAY J H. Mechanisms and models for anaerobic granulation in upflow anaerobic sludge blanket reactor [J]. Water Research, 2003, 37(3): 661–673. DOI: https://doi.org/10.1016/S0043-1354(02)00351-2.

    Article  Google Scholar 

  18. MA Bin, PENG Yong-zhen, ZHANG Shun-jun, WANG Jun-min, GAN Yi-ping, JIANG Chang, WANG Shu-ying, WANG Shan-yun, ZHU Gui-bing. Performance of anammox UASB reactor treating low strength wastewater under moderate and low temperatures [J]. Bioresource Technology, 2013, 129(2): 606–611. DOI: https://doi.org/10.1016/j.biortech.2012.11.025.

    Article  Google Scholar 

  19. YU Han-qin, TAY J H, FANG H H. The roles of calcium in sludge granulation during UASB reactor start-up [J]. Water Research, 2001, 35(4): 1052–1060. DOI: https://doi.org/10.1016/S0043-1354(00)00345-6.

    Article  Google Scholar 

  20. TAN Hao, WANG Yun-yan, TANG Xi, LI Lu-shan, FENG Fan, MAHMOOD Q, WU Di, TANG Chong-jian. Quantitative determination of cavitation formation and sludge flotation in anammox granules by using a new diffusion-reaction integrated mathematical model [J]. Water Research, 2020, 1: 115632. DOI: https://doi.org/10.1016/j.watres.2020.115632.

    Article  Google Scholar 

  21. LU Hui-feng, ZHENG Ping, JI Qi-xing, ZHANG Hong-tao, JI Jun-yuan, WANG Lan, DING Shuang, CHEN Ting-ting, ZHANG Ji-qiang, TANG Chong-jian, CHEN Jian-wei. The structure, density and settlability of anammox granular sludge in high-rate reactors [J]. Bioresource Technology, 2012, 1: 312–317. DOI: https://doi.org/10.1016/j.biortech.2012.07.003.

    Article  Google Scholar 

  22. WU Jing, ZHOU Hong-ming, LI Huai-zhi, ZHANG Peng-cheng, JIANG Jie. Impacts of hydrodynamic shear force on nucleation of flocculent sludge in anaerobic reactor [J]. Water Research, 2009, 43(12): 3029–3036. DOI: https://doi.org/10.1016/j.watres.2009.04.026.

    Article  Google Scholar 

  23. CHEN Ting-ting, ZHENG Ping, SHEN Li-dong, DING Shuang, MAHMMOD Q. Kinetic characteristics and microbial community of anammox-EGSB reactor [J]. Journal of Hazardous Materials, 2011, 190(1–3): 28–35. DOI: https://doi.org/10.1016/j.jhazmat.2010.12.060.

    Article  Google Scholar 

  24. NI Shou-qing, LEE P H, SUNG S W. The kinetics of nitrogen removal and biogas production in an anammox non-woven membrane reactor [J]. Bioresource Technology, 2010, 101(15): 5767–5773. DOI: https://doi.org/10.1016/j.biortech.2010.02.074.

    Article  Google Scholar 

  25. XIAO Rui-yang, HE Lei, LUO Zong-hao, SPINNEY R, WEI Zong-su, DIONYSIOU D D, ZHAO Fei-ping. An experimental and theoretical study on the degradation of clonidine by hydroxyl and sulfate radicals [J]. Science of the Total Environment, 2020, 1: 136333. DOI: https://doi.org/10.1016/j.scitotenv.2019.136333.

    Article  Google Scholar 

  26. XIAO Rui-yang, BAI Lu, LIU Kai, SHI Yan, MINAKATA D, HUANG C H, SPINNEY R, SETH R, DIONYSIOU D D, WEI Zong-su, SUN Pei-zhe. Elucidating sulfate radical-mediated disinfection profiles and mechanisms of Escherichia coli and Enterococcus faecalis in municipal wastewater [J]. Water Research, 2020, 1: 115552. DOI: https://doi.org/10.1016/j.watres.2020.115552.

    Article  Google Scholar 

  27. SONG Yu-xia, LIAO Qi, YU Cheng, XIAO Rui-yang, TANG Chong-jian, CHAI Li-yuan, DUAN Cheng-shan. Physicochemical and microbial properties of settled and floating anammox granules in upflow reactor [J]. Biochemical Engineering Journal, 2017, 1: 75–85. DOI: https://doi.org/10.1016/j.bej.2017.04.002.

    Article  Google Scholar 

  28. CHEN Hui, HU Hai-yan, CHEN Qian-qian, SHI Man-ling, JIN Ren-cun. Successful start-up of the anammox process: Influence of the seeding strategy on performance and granule properties [J]. Bioresource Technology, 2016, 1: 594. DOI: https://doi.org/10.1016/j.biortech.2016.03.139.

    Article  Google Scholar 

  29. CHOI M, CHO K, LEE S, CHUNG Y C, PARK J. Effective seeding strategy using flat type poly (vinyl alcohol) cryogel for anammox enrichment [J]. Chemosphere, 2018, 1: 88–97. DOI: https://doi.org/10.1016/j.chemosphere.2018.04.055.

    Article  Google Scholar 

  30. SOBOTKA D, TUSZYNSKA A, KOWAL P, CIESIELSKI S, CZERWIONKA K, MAKINA J. Long-term performance and microbial characteristics of the anammox-enriched granular sludge cultivated in a bench-scale sequencing batch reactor [J]. Biochemical Engineering Journal, 2017, 1: 125–135. DOI: https://doi.org/10.1016/j.bej.2017.01.007.

    Article  Google Scholar 

  31. YANG Wan, HE Shi-long, HAN Ming, WANG Bing-bing, NIU Qi-gui, CHEN Yi, WANG Hai-bo. Nitrogen removal performance and microbial community structure in the start-up and substrate inhibition stages of an anammox reactor [J]. Journal of Bioscience and Bioengineering, 2018, 126(1): 88–95. DOI: https://doi.org/10.1016/j.jbiosc.2018.02.004.

    Article  Google Scholar 

  32. LI Huo-sheng, ZHOU Shao-qi, MA Wei-hao, HUANG Guo-tao, XU Bin. Fast start-up of ANAMMOX reactor: Operational strategy and some characteristics as indicators of reactor performance [J]. Desalination, 2012, 286(1): 436–441. DOI:https://doi.org/10.1016/j.desal.2011.11.038.

    Article  Google Scholar 

  33. LALOO A E, WEI J, WANG Dong-bo, NARAYANASAMY S, VANWONTERGHEM I, WAITE D, STEEN J, KAYSEN A, HEINTZ-BUSCHART A, WANG Qi-lin, SCHULZ B, NOUWENS A, WILMES P, HUGENHOLTZ P, YUAN Zhi-guo, BOND P L. Mechanisms of persistence of the ammonia-oxidizing bacteria nitrosomonas to the biocide free nitrous acid [J]. Environmental Science and Technology, 2018, 52(9): 5386–5397. DOI: https://doi.org/10.1021/acs.est.7b04273.

    Article  Google Scholar 

  34. LU Hui-feng, JI Qi-xing, DING Shuang, ZHENG Ping. The morphological and settling properties of ANAMMOX granular sludge in high-rate reactors [J]. Bioresource Technology, 2013, 143(17): 592–597. DOI: https://doi.org/10.1016/j.biortech.2013.06.046

    Article  Google Scholar 

  35. NI Bing-jie, HU Bao-lan, FANG Fang, XIE Wen-ming, KARTAL B, LIU Xian-wei, SHENG Guo-ping, JETTEN M, ZHENG Ping, YU Han-qing. Microbial and physicochemical characteristics of compact anaerobic ammonium-oxidizing granules in an upflow anaerobic sludge blanket reactor [J]. Applied and Environmental Microbiology, 2010, 76(8): 2652–2656. DOI:https://doi.org/10.1128/AEM.02271-09.

    Article  Google Scholar 

  36. DA Kang, GUO Lei-yan, HU Qian-yi, XU Dong-dong, YU Tao, LI Yi-yu, ZENG Zhuo, LI Wen-ji, SHEN Xiao-jing, ZHENG Ping. Surface convexity of anammox granular sludge: Digital characterization, state indication and formation mechanism [J]. Environment International, 2019, 1: 105017. DOI: https://doi.org/10.1016/j.envint.2019.105017.

    Google Scholar 

  37. PUYOL D, CARVAJAL-ARROYO J M, GARCIA B, SIERRA-ALVAREZ R, FIELD J A. Kinetic characterization of Brocadia spp.-dominated anammox cultures [J]. Bioresource Technology, 2013, 139(7): 94–100. DOI: https://doi.org/10.1016/j.biortech.2013.04.001.

    Article  Google Scholar 

  38. XIONG Lei, WANG Yun-yan, TANG Chong-jian, CHAI Li-yuan, XU Kang-que, SONG Yu-xia, ALI M, ZHENG Ping. Start-Up characteristics of a granule-based anammox UASB reactor seeded with anaerobic granular sludge [J]. BioMed Research International, 2013, 2013: 1–9. DOI: https://doi.org/10.1155/2013/396487.

    Google Scholar 

  39. ISANTA E, BEZERRA T, FERNÁNDEZ I, SUAREZ-OJEDA M E, PEREZ J, CARRERA J. Microbial community shifts on an anammox reactor after a temperature shock using 454-pyrosequencing analysis [J]. Bioresource Technology, 2015, 1: 207–213. DOI: https://doi.org/10.1016/j.biortech.2015.01.064.

    Article  Google Scholar 

  40. DE COCKER P, BESSIERE Y, HERNANDEZ-RAQUET G, DOBOS S, MOZO I, GAVAL G, CALIGARIS M, BARILON B, VLAEMINCK S E, SPERANDIO M. Enrichment and adaptation yield high anammox conversion rates under low temperatures [J]. Bioresource Technology, 2018, 1: 505–512. DOI: https://doi.org/10.1016/j.biortech.2017.11.079

    Article  Google Scholar 

  41. MIAO Lei, ZHANG Qiong, WANG Shu-ying, LI Bai-kun, WANG Zhong, ZHANG Su-jian, ZHANG Man, PENG Yong-zhen. Characterization of EPS Compositions and microbial community in an anammox SBBR system treating landfill leachate [J]. Bioresource Technology, 2017, 1: 108–116. DOI: https://doi.org/10.1016/j.biortech.2017.09.151.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xi-lin Chai  (柴喜林) or Chong-jian Tang  (唐崇俭).

Additional information

Foundation item: Project(51878662) supported by the National Natural Science Foundation of China; Project(2017SK2420) supported by the Science and Technology of Hunan Province, China; Project(2019JJ20033) supported by the Distinguished Youth Natural Science Foundation of Hunan Province, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, Yx., Ali, M., Feng, F. et al. Performance of a high-rate anammox reactor under high hydraulic loadings: Physicochemical properties, microbial structure and process kinetics. J. Cent. South Univ. 27, 1197–1210 (2020). https://doi.org/10.1007/s11771-020-4360-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-020-4360-8

Key words

关键词

Navigation