Skip to main content
Log in

A numerical investigation in buoyancy effects on micro jet diffusion flame

浮升力对微射流扩散火焰影响的数值模拟研究

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The buoyancy effect on micro hydrogen jet flames in still air was numerially studied. The results show that when the jet velocity is relatively large (V≥0.2 m/s), the flame height, width and temperature decrease, whereas the peak OH mass fraction increases significantly under normal gravity (g=9.8 m/s2). For a very low jet velocity (e.g., V= 0.1 m/s), both the peak OH mass fraction and flame temperature under g=9.8 m/s2 are lower than the counterparts under g=0 m/s2. Analysis reveals that when V≥0.2 m/s, fuel/air mixing will be promoted and combustion will be intensified due to radial flow caused by the buoyancy effect. However, the flame temperature will be slightly decreased owing to the large amount of entrainment of cold air into the reaction zone. For V=0.1 m/s, since the heat release rate is very low, the entrainment of cold air and fuel leakage from the rim of tube exit lead to a significant drop of flame temperature. Meanwhile, the heat loss rate from fuel to inner tube wall is larger under g=9.8 m/s2 compared to that under g=0 m/s2. Therefore, the buoyancy effect is overall negative at very low jet velocities.

摘要

本文通过数值模拟对静止空气中微射流氢气火焰的浮升力效应进行了研究。结果显示, 当射流 速度相对较大时 (V≥0.2 m/s), 常规重力加速度(g=9.8 m/s2)下的火焰高度、宽度和温度均比无重力作用 时小, 但是OH 的质量分数却显著增大。当射流速度非常小(例如: V=0.1 m/s)时, 常规重力加速度下 OH 质量分数的峰值和火焰温度均小于无重力作用时的对应值。分析表明, 当V≥0.2 m/s 时, 由于浮升 力效应导致的径向流动促进了燃料与空气之间的混合, 从而使燃烧得到强化。然而, 由于大量冷空气 被卷入反应区, 火焰温度略有降低。当V=0.1 m/s 时, 因为热释放速率非常小, 冷空气的卷入和燃料 在管口边缘的泄露导致火焰温度显著下降。与此同时, 有重力作用时从燃料向管子内壁的散热损失更 大。因此, 总的来说浮升力在非常小的射流速度下是负面效应。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. FERNANDEZ-PELLO A C. Micro power generation using combustion: Issues and approaches. Proceedings of the Combustion Institute, 2002, 29: 883–899. DOI: 10.1016/S1540-7489(02)80113-4.

    Article  Google Scholar 

  2. WALTHER D C, AHN J. Advances and challenges in the development of power-generation systems at small scales. Progress in Energy and Combustion Science, 2011, 37: 583–610. DOI: 10.1016/j.pecs.2010.12.002.

    Article  Google Scholar 

  3. E J Q, HUANG H J, ZHAO X H. Numerical investigations on effects of bluff body in flat plate micro thermophotovoltaic combustor with sudden expansion. Journal of Central South University, 2016, 23: 975–982. DOI: 10.1007/s11771-016-3145-6.

    Article  Google Scholar 

  4. WAN J L, FAN A W, YAO H, LIU W. Experimental investigation and numerical analysis on the blow-off limits of premixed CH4/air flames in a mesoscale bluff-body combustor. Energy, 2016, 113: 193–203. DOI: 10.1016/j.energy.2016.07.047.

    Article  Google Scholar 

  5. YANG W, LI L H, FAN A W, YAO H. Effect of oxygen enrichment on combustion efficiency of lean H2/N2/O2 flames in a micro cavity-combustor. Chemical Engineering and Processes: Process Intensification, 2018, 127: 50–57. DOI: 10.1016/j.cep.2018.03.019.

    Article  Google Scholar 

  6. WANG S X, YUAN Z L, FAN A W. Experimental investigation on non-premixed CH4/air combustion in a novel miniature Swiss-roll combustor. Chemical Engineering and Processes: Process Intensification, 2019, 139: 44–50. DOI: 10.1016/j.cep.2019.03.019.

    Article  Google Scholar 

  7. BAN H, VENKATESH S, SAITO K. Convection-diffusion controlled laminar micro flames. Journal of Heat Transfer, 1994, 116(4): 954–959. DOI: 10.1115/1.2911471.

    Article  Google Scholar 

  8. IDA T, FUCHIHATA M, MIZUTANI Y. Microscopic diffusion flame structure with micro flames [C]//Proceedings of the Third International Symposium on Scale Modeling. Nagoya, Japan, 2000.

    Google Scholar 

  9. MATTA L M, NEUMEIER Y, LEMON B, ZINN B T. Characteristics of microscale diffusion flames. Proceedings of the Combustion Institute, 2002, 29: 933–939. DOI: 10.1016/S1540-7489(02)80118-3.

    Article  Google Scholar 

  10. FUJIWARA K, NAKAMURA Y. Experimental study on the unique stability mechanism via miniaturization of jet diffusion flames (microflame) by utilizing preheated air system. Combustion and Flame, 2013, 160: 1373–1380. DOI: 10.1016/j.combustflame.2013.03.002.

    Article  Google Scholar 

  11. CHENG T S, CHEN C P, CHEN C S, LI Y H, WU C Y, CHAO Y C. Characteristics of micro jet methane diffusion flames. Combustion Theory and Modelling, 2006, 10: 861–881. DOI: 10.1080/13647830600551917a.

    Article  Google Scholar 

  12. HIRASAWA T, SUMI M, NAKAMURA Y. Effect of burner size and material on extinction of methane diffusion microflame. Journal of JSME, 2013, 13: 75–79. DOI: 10.11395/jjsem.13.s75.

    Google Scholar 

  13. HOSSAIN A, NAKAMURA Y. Thermal and chemical structures formed in the micro burner of miniaturized hydrogen-air jet flames. Proceedings of the Combustion Institute, 2015, 35: 3413–3420. DOI: 10.1016/j.proci.2014.08.008.

    Article  Google Scholar 

  14. LI X, ZHANG J, YANG H, JIANG L Q, WANG X H, ZHAO D Q. Combustion characteristics of non-premixed methane micro-jet flame in coflow air and thermal interaction between flame and micro tube. Applied Thermal Engineering, 2017, 112: 296–303. DOI: 10.1016/j.applthermaleng.2016.10.082.

    Article  Google Scholar 

  15. ZHANG J, LI X, YANG H, YANG H L, JIANG L Q, WANG X H, ZHAO D Q. Study on the combustion characteristics of non-premixed hydrogen micro-jet flame and the thermal interaction with solid micro tube. International Journal of Hydrogen Energy, 2017, 42: 3853–3862. DOI: 10.1016/j.ijhydene.2016.07.255.

    Article  Google Scholar 

  16. GAO J, HOSSAIN A, NAKAMURA Y. Flame base structures of micro-jet hydrogen/methane diffusion flames. Proceedings of the Combustion Institute, 2017, 36: 4209–4216. DOI: 10.1016/j.proci.2016.08.034.

    Article  Google Scholar 

  17. SUNDERLAND P B, MENDELSON B J, YUAN Z G, URBAN D L. Shapes of buoyant and nonbuoyant laminar jet diffusion flames. Combust and Flame, 1999, 116: 376–386. DOI: 10.1016/S0010-2180(98)00045-5.

    Article  Google Scholar 

  18. SUNDERLAND P B, KRISHNAN S S, GORE J P. Effects of oxygen enhancement and gravity on normal and inverse laminar jet diffusion flames. Combustion and Flame, 2004, 136: 254–256. DOI: 10.1016/j.combustflame.2003.09.015.

    Article  Google Scholar 

  19. AALBURG C, DIEZ F J, FAETH G M, SUNDERLAND P B, YUAN Z G, URBAN D L. Shapes of non-buoyant round hydrocarbon-fueled laminar-jet diffusion flames in still air. Combustion and Flame, 2005, 142: 1–16. DOI: 10.1016/j.combustflame.2004.12.009.

    Article  Google Scholar 

  20. ZHANG D, FANG J, GUAN J, WANG J W, ZENG Y, WANG J J, ZHANG Y M. Laminar jet methane/air diffusion flame shapes and radiation of low air velocity coflow in microgravity. Fuel, 2014, 130: 25–33. DOI: 10.1016/j.fuel.2014.04.008.

    Article  Google Scholar 

  21. LI J, ZHAO Z W, KAZAKOV A, DRYER F L. An updated comprehensive kinetic model of hydrogen combustion. International Journal of Chemical Kinetics, 2004, 36: 1–10. DOI: 10.1002/kin.20026.

    Article  Google Scholar 

  22. NING D G, LIU Y, XIANG Y, FAN A W. Experimental investigation on non-premixed methane/air combustion in Y-shaped mesoscale combustors with/without fibrous porous media. Energy Conversion and Management, 2017, 138: 22–29. DOI: 10.1016/j.enconman.2017.01.065.

    Article  Google Scholar 

  23. XIANG Y, YUAN Z L, WANG S X, FAN A W. Effects of flow rate and fuel/air ratio on propagation behaviors of diffusion H2/air flames in a micro combustor. Energy, 2019, 179: 315–322. DOI: 10.1016/j.energy.2019.05.052.

    Article  Google Scholar 

  24. LI L H, YUAN Z L, XIANG Y, FAN A W. Numerical investigation on mixing performance and diffusion combustion characteristics of H2 and air in planar micro-combustor. International Journal of Hydrogen Energy, 2018, 43: 12491–12498. DOI: 10.1016/j.ijhydene. 2018.04.194.

    Article  Google Scholar 

  25. LIU L, ZHAO L, FAN A W. Effects of wall thickness and material on flame stability in a planar micro-combustor. Journal of Central South University, 2019, 26: 2224–2233. DOI: 10.1007/s11771-019-4168-6.

    Article  Google Scholar 

  26. FAN A W, LI L H, YANG W, YUAN Z L. Comparison of combustion efficiency between micro combustors with single- and double-layered walls: A numerical study. Chemical Engineering and Processes: Process Intensification, 2019, 137: 39–47. DOI: 10.1016/j.cep.2019.02.004.

    Article  Google Scholar 

  27. LI L H, WANG S X, ZHAO L, FAN A W. A numerical investigation on non-premixed catalytic combustion of CH4/(O2+N2) in a planar micro-combustor. Fuel, 2018, 43: 12491–12498. DOI: 10.1016/j.fuel.2019.115823.

    Google Scholar 

  28. XIANG Y, ZHAO M, HUANG H, FAN A W. Experimental investigation on the scale effects on diffusion H2/air flames in Y-shaped micro-combustors. International Journal of Hydrogen Energy, 2019, 44: 30462–30471. DOI: 10.1016/j.ijhydene.2019.09.195.

    Article  Google Scholar 

  29. XIANG Y, WANG S X, YUAN Z L, FAN A W. Effects of channel length on propagation behaviors of non-premixed H2-air flames in Y-shaped micro combustors. International Journal of Hydrogen Energy, DOI: 10.1016/j.ijhydene.2019.11.147.

  30. YUAN Z L, FAN A W. The effects of aspect ratio on CH4/air flame stability in rectangular mesoscale combustors. Journal of the Energy Institute, 2020, 93: 792–801. DOI: 10.1016/j.joei.2019. 05.003.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ai-wu Fan PhD  (范爱武).

Additional information

LIU Lei and ZHAO Ming contributed equally to this work

Foundation item: Project(51576084) supported by the National Natural Science Foundation of China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Zhao, M., Chen, Yk. et al. A numerical investigation in buoyancy effects on micro jet diffusion flame. J. Cent. South Univ. 27, 867–875 (2020). https://doi.org/10.1007/s11771-020-4337-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-020-4337-7

Key words

关键词

Navigation