Skip to main content
Log in

Kinetics of leaching lithium from lepidolite using mixture of hydrofluoric and sulfuric acid

锂云母混酸 HF/H2SO4 浸出锂的动力学研究

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The fluorine-based chemical method shows great potential in leaching lithium (Li) from lepidolite. Leaching kinetics of Li in a mixture of sulfuric acid and hydrofluoric acid, which is a typical lixivant for the fluorine-based chemical method, was carried out under crucial factors such as different HF/ore ratios (1:1–3:1 g/mL) and leaching temperatures (50–85 °C). The kinetics data fit well with the developed shrinking-core model, indicating that the leaching rate of Li was controlled by the chemical reaction and inner diffusion at the beginning of leaching (0–30 min) as a calculated apparent activation energy (Ea) of 20.62 kJ/mol. The inner diffusion became the rate-limiting step as the leaching continues (60–180 min). Moreover, effects of HF/ore ratio and leaching temperature on selective leaching behavior of Li, Al and Si were discussed. 90% of fluorine mainly existed as HF/F in leaching solution, which can provide theoretical guidance for further removal or recovery of F.

摘要

锂云母混酸 HF/H2SO4 浸出动力学研究表明: 50∼85 °C 下锂浸出速率在浸出前期(0∼30 min)由表面化学反应以及内扩散共同控制, 表观活化能 Ea 为 20.62 kJ/mol; 浸出后期(60∼180 min)则主要由产物内扩散控制. 氢氟酸添加量相比浸出温度对 Li、Al 和 Si 的浸出速率影响更显著. 浸出温度对 Li 浸出效率影响比对 Al 和 Si 的影响更明显.F 元素在固相不溶渣中的存在形式则主要为 Al-F 不溶氟化物和 K2SiF6. 此外, 液相中 F 元素在所研究的氢氟酸添加量及浸出温度下均可保持较高保留率(>90%), 为 F 元素的高效利用及后续回收利用提供保障.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. CHOUBEY P K, KIM M S, SRIVASTAVA R R, LEE J C, LEE J Y Advance review on the exploitation of the prominent energy-storage element: Lithium. Part I: From mineral and brine resources [J]. Minerals Engineering, 2016, 89: 119–137. DOI: https://doi.org/10.1016/j.mineng.2016.01.010.

    Article  Google Scholar 

  2. MESHRAM P, PANDEY B D, MANKHAND T R. Extraction of lithium from primary and secondary sources by pre-treatment, leaching and separation: A comprehensive review [J]. Hydrometallurgy, 2014, 150: 192–208. DOI: https://doi.org/10.1016/j.hydromet.2014.10.012.

    Article  Google Scholar 

  3. KESLER S E, GRUBER P W, MEDINA P A, KEOLEIAN G A, EVERSON M P, WALLINGTON T J. Global lithium resources: Relative importance of pegmatite, brine and other deposits [J]. Ore Geology Reviews, 2012, 48(5): 55–69. DOI: https://doi.org/10.1016/j.oregeorev.2012.05.006.

    Article  Google Scholar 

  4. LI Huan, EKSTEEN J, KUANG Ge. Recovery of lithium from mineral resources: State-of-the-art and perspectives—A review [J]. Hydrometallurgy, 2019, 189: 105129. DOI: https://doi.org/10.1016/j.hydromet.2019.105129.

    Article  Google Scholar 

  5. KUANG Ge, LIU Yu, LI Huan, XING Sheng-zhou, LI Fu-jie, GUO Hui. Extraction of lithium from β-spodumene using sodium sulfate solution [J]. Hydrometallurgy, 2018, 177: 49–56. DOI: https://doi.org/10.1016/j.hydromet.2018.02.015.

    Article  Google Scholar 

  6. GUO Hui, KUANG Ge, WANG Hai-dong, YU Hai-zhao, ZHAO Xiao-kang. Investigation of enhanced leaching of lithium from α-spodumene using hydrofluoric and sulfuric acid [J]. Minerals, 2017, 7(11): 205. DOI: https://doi.org/10.3390/min7110205.

    Article  Google Scholar 

  7. MARTIN G, SCHNEIDER A, VOIGT W, BERTAU M. Lithium extraction from the mineral zinnwaldite: Part II: Lithium carbonate recovery by direct carbonation of sintered zinnwaldite concentrate [J]. Minerals Engineering, 2017, 110: 75–81. DOI: https://doi.org/10.1016/j.mineng.2017.04.009.

    Article  Google Scholar 

  8. GUO Hui, KUANG Ge, WAN Hao, YANG Yi, YU Hai-zhao, WANG Hai-dong. Enhanced acid treatment to extract lithium from lepidolite with a fluorine-based chemical method [J]. Hydrometallurgy, 2019, 183: 9–19 DOI: https://doi.org/10.1016/j.hydromet.2018.10.020.

    Article  Google Scholar 

  9. KUANG Ge, LI Huan, HU Song, JIN Ran, LIU Shan-jun, GUO Hui. Recovery of aluminium and lithium from gypsum residue obtained in the process of lithium extraction from lepidolite [J]. Hydrometallurgy, 2015, 157: 214–218. DOI: https://doi.org/10.1016/j.hydromet.2015.08.020.

    Article  Google Scholar 

  10. GUO Hui, KUANG Ge, YANG Jing-xi, SONG Hu. Fundamental research on a new process to remove Al3+ as potassium alum during lithium extraction from lepidolite [J]. Metallurgical and Materials Transactions B, 2016, 47: 3557–3564. DOI: https://doi.org/10.1007/s11663-016-0774-y.

    Article  Google Scholar 

  11. HEKIM Y, FOGLER H S. Acidization-VI on the equilibrium relationships and stoichiometry of reactions in mud acid [J]. Chemical Engineering Science, 1977, 32: 1–9. DOI: https://doi.org/10.1016/0009-2509(77)80188-7.

    Article  Google Scholar 

  12. OGORODOVA L P, KISELEVA I A, MELCHAKOVA L V, SCHURIGA T N. Thermodynamic properties of lithium mica: Lepidolite [J]. Geochemistry International, 2010, 435(1): 68–70. DOI: https://doi.org/10.1016/j.tca.2005.04.026.

    Google Scholar 

  13. VIECELI N, NOGUEIRA C A, PEREIRA M F C, DIAS A P S, DURÃO F O, GUIMARÃES C, MARGARIDO F. Effects of mechanical activation on lithium extraction from a lepidolite ore concentrate [J]. Minerals Engineering, 2017, 102: 1–14. DOI: https://doi.org/10.1016/j.mineng.2016.12.001.

    Article  Google Scholar 

  14. LUONG V T, KANG Dong-jun, AN J W, DAO D A, KIM M J, TRAN T. Iron sulphate roasting for extraction of lithium from lepidolite [J]. Hydrometallurgy, 2014, 141: 8–16. DOI: https://doi.org/10.1016/j.hydromet.2013.09.016.

    Article  Google Scholar 

  15. YAN Qun-xuan, LI Xin-hai, YIN Zhou-lan, WANG Zhi-xing, GUO Hua-jun, PENG Wen-jie, HU Qi-yang. A novel process for extracting lithium from lepidolite [J]. Hydrometallurgy, 2012, 121–124: 54–59. DOI: https://doi.org/10.1016/j.hydromet.2012.04.006.

    Article  Google Scholar 

  16. YAN Qun-xuan, LI Xin-hai, WANG Zhi-xing, WANG Jie-xi, GUO Hua-jun, HU Qi-yang, PENG Wen-jie, WU Xi-fei. Extraction of lithium from lepidolite using chlorination roasting-water leaching process [J]. Transactions of Nonferrous Metals Society of China, 2012, 22: 1753–1759. DOI: https://doi.org/10.1016/S1003-6326(11)61383-6.

    Article  Google Scholar 

  17. HIEN-DINH T T, LUONG V T, GIERE R, TRAN T. Extraction of lithium from lepidolite via iron sulphide roasting and water leaching [J]. Hydrometallurgy, 2015, 153: 154–159. DOI: https://doi.org/10.1016/j.hydromet.2015.03.002.

    Article  Google Scholar 

  18. LEE J. Extraction of lithium from lepidolite using mixed grinding with sodium sulfide followed by water leaching [J]. Minerals, 2015, 5: 737–743. DOI: https://doi.org/10.3390/min5040521.

    Article  Google Scholar 

  19. YAN Qun-xuan, LI Xin-hai, WANG Zhi-xing, WU Xi-fei, GUO Hua-jun, HU Qi-yang, PENG Wen-jie, WANG Jie-xi. Extraction of valuable metals from lepidolite [J]. Hydrometallurgy, 2012, s117–118: 116–118. DOI: https://doi.org/10.1016/j.hydromet.2012.02.004.

    Article  Google Scholar 

  20. ROSALES G D, DEL CARMEN RUIZ M, RODRIGUEZ M H. Novel process for the extraction of lithium from β-spodumene by leaching with HF[J]. Hydrometallurgy, 2014, 147–148: 1–6. DOI: https://doi.org/10.1016/j.hydromet.2014.04.009.

    Article  Google Scholar 

  21. REICHEL S, AUBEL T, PATZIG A, JANNECK E, MARTIN M. Lithium recovery from lithium-containing micas using sulfur oxidizing microorganisms [J]. Minerals Engineering, 2017, 106: 18–21. DOI: https://doi.org/10.1016/j.mineng.2017.02.012.

    Article  Google Scholar 

  22. FOGLER H S, LUND K, MCCUNE C C. Acidization III—The kinetics of the dissolution of sodium and potassium feldspar in HF/HCl acid mixtures [J]. Chemical Engineering Science, 1975, 30(11): 1325–1332. DOI: https://doi.org/10.1016/0009-2509(75)85061-5.

    Article  Google Scholar 

  23. LI Nian-yin, ZENG Fan-hua, LI Jun, ZHANG Qian, FENG Yan-lin, LIU Ping-li. Kinetic mechanics of the reactions between HCl/HF acid mixtures and sandstone minerals [J]. Journal of Natural Gas Science and Engineering, 2016, 34: 792–802. DOI: https://doi.org/10.1016/j.jngse.2016.07.044.

    Article  Google Scholar 

  24. KLINE W E, FOGLER H S. Dissolution kinetics: Catalysis by strong acids [J]. Journal of Colloid and Interface Science, 1981, 82(1): 93–102. DOI: https://doi.org/10.1016/0021-9797(81)90127-2.

    Article  Google Scholar 

  25. TIAN Jun, YIN Jing-qun, CHI Ruan, RAO Guo-hua, JIANG Min-tao, OUYANG Ke-xian. Kinetics on leaching rare earth from the weathered crust elution-deposited rare earth ores with ammonium sulfate solution [J]. Hydrometallurgy, 2010, 101(3, 4): 166–170. DOI: https://doi.org/10.1016/j.hydromet.2010.01.001.

    Google Scholar 

  26. DICKINSON C F, HEAL G R. Solid-liquid diffusion controlled rate equations [J]. Thermochimica Acta, 1999, 340–341: 89–103. DOI: https://doi.org/10.1016/s0040-6031(99)00256-7.

    Article  Google Scholar 

  27. ZHAO Xun, YANG Jing, MA Hong-wen, LIU Mei-tang, LIN Fei. Kinetics of lepidolite decomposition reaction in sulfuric acid solution [J]. Chinese Journal of Nonferrous Metals, 2015, 25(9): 2588–2595. DOI: https://doi.org/10.19476/j.ysxb.1004.0609.2015.09.035. (in Chinese)

    Google Scholar 

  28. HUANG Yu-kun, DOU Zhi-he, ZHANG Ting-an, LIU Jiang. Leaching kinetics of rare earth elements and fluoride from mixed rare earth concentrate after roasting with calcium hydroxide and sodium hydroxide [J]. Hydrometallurgy, 2017, 173: 15–21. DOI: https://doi.org/10.1016/j.hydromet.2017.07.004.

    Article  Google Scholar 

  29. LIU Jia-nan, ZHAI Yu-chun, WU Yan, ZHANG Jun, SHEN Xiao-yi. Kinetics of roasting potash feldspar in presence of sodium carbonate [J]. Journal of Central South University, 2017, 24(7): 1544–1550. DOI: https://doi.org/10.1007/s11771-017-3559-9.

    Article  Google Scholar 

  30. GUO Hui, YU Hai-zhao, ZHOU An-an, LÜ Meng-hua, WANG Qiao, KUANG Ge, WANG Hai-dong. Kinetics of leaching lithium from α-spodumene in enhanced acid treatment using HF/H2SO4 as medium [J]. Transactions of Nonferrous Metals Society of China, 2019, 29(2): 407–415. DOI: https://doi.org/10.1016/S1003-6326(19)64950-2.

    Article  Google Scholar 

  31. CHEN Bing, SHEN Xiao-yi, GU Hui-min, SHAO Hong-mei, ZHAI Yu-chun, MA Pei-hua. Extracting reaction mechanism analysis of Zn and Si from zinc oxide ore by NaOH roasting method [J]. Journal of Central South University, 2017, 24: 2266–2274(2017). DOI: https://doi.org/10.1007/s11771-017-3637-z.

    Article  Google Scholar 

  32. MARTINEZ E J, GIRARDET J L, MORAT C. Multinuclear NMR study of fluoroaluminate complexes in aqueous solution [J]. Inorganic Chemistry, 1996, 35(3): 706–710. DOI: https://doi.org/10.1021/ic9507575.

    Article  Google Scholar 

  33. DUKE C V A, MILLER J M, CLARK J H, KYBETT A P. 19F mas NMR and FTIR analysis of the adsorption of alkali metal fluorides onto alumina [J]. Journal of Molecular Catalysis, 1990, 62(2): 233–242. DOI: https://doi.org/10.1016/0304-5102(90)85216-5.

    Article  Google Scholar 

  34. FINNEY W F, WILSON E, CALLENDER A, MORRIS M D, BECK L W. Reexamination of Hexafluorosilicate Hydrolysis by 19F NMR and pH measurement [J]. Environmental Science & Technology, 2006, 40(8): 2572–2577. DOI: https://doi.org/10.1021/es052295s.

    Article  Google Scholar 

  35. HU Pei-wei, YANG Hua-ming. Insight into the physicochemical aspects of kaolins with different morphologies [J]. Applied Clay Science, 2013, 74: 58–65. DOI: https://doi.org/10.1016/j.clay.2012.10.003.

    Article  Google Scholar 

Download references

Acknowledgments

The authors also thank for the Changsha Research Institute of Mining and Metallurgy for e l emental analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Guo  (郭慧).

Additional information

Foundation item: Project(51474237) supported by the National Natural Science Foundation of China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Hd., Zhou, Aa., Guo, H. et al. Kinetics of leaching lithium from lepidolite using mixture of hydrofluoric and sulfuric acid. J. Cent. South Univ. 27, 27–36 (2020). https://doi.org/10.1007/s11771-020-4275-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-020-4275-4

Key words

关键词

Navigation