Skip to main content
Log in

Corrosion behavior and mechanical properties of cold metal transfer welded dissimilar AA7075-AA5754 alloys

不同种类 AA7075-AA5754 合金冷态金属转移焊的腐蚀行为和力学性能

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Cold metal transfer (CMT) welding is a brand-new arc welding technique which shows adequate results for welding of thin sheets and dissimilar materials. Corrosion behavior of dissimilar aluminum joints should be determined in terms of predicting the effect of welding process on the possible failures in their constructions caused by corrosive agents. The present study investigates the effect of heat input on mechanical properties and corrosion rate of AA5754-AA7075 joints welded by CMT using ER5356 filler wire. Pore formation was observed not only in the weld metal but also in the partially melted zone of AA7075 base metal due to the vaporization of zinc. Increased heat input caused over aging and zinc vaporization in AA7075 base metal, and grain coarsening in AA5754 base metal consequently decreased the tensile strength. The average tensile strength of AA7075-AA5754 joints varies between 235 and 240 MPa. The ductile fracture occurred at the AA5754 base metal side in all samples. Pitting was observed as the dominant corrosion mechanism. Corrosion resistance tended to increase with increasing heat input. Heat input values between 95 and 110 J/mm are recommended for the optimization of corrosion resistance and strength.

摘要

冷金属转移(CMT)焊接是一种全新的电弧焊技术, 在薄板及异种材料的焊接中取得了良好的效果. 不同类型铝接头的腐蚀行为应根据腐蚀介质对其结构可能造成的失效的影响来进行预测. 研究了热输入对 ER5356 焊丝 CMT 焊接的 AA5754-AA7075 接头力学性能和腐蚀速率的影响. 在焊缝金属和 AA7075 基体金属的部分熔化区都可观察到气孔的形成, 这是由于锌的蒸发作用造成的. 随着热输入的增加, AA7075 基体金属发生过时效和锌汽化, AA5754 基体金属晶粒粗化, 从而降低了抗拉强度. AA7075-AA5754 接头的平均抗拉强度在 235∼240 MPa. 所有样品中, 塑性断裂均发生在 AA5754 母材一侧. 腐蚀机理以点蚀为主. 随着热输入的增加, 耐蚀性逐渐增强. 为优化耐腐蚀性和强度, 建议热输入值在 95 至 110 J/mm 之间.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. PINTO L A, QUINTINO L, MIRANDA R M, CARR P. Laser welding of dissimilar aluminium alloys with filler materials [J]. Welding in the World, 2010, 54(11, 12): 333–341.

    Article  Google Scholar 

  2. CASALINO G, MORTELLO M, LEO P, BENYOUNIS K Y, OLABI A G. Study on arc and laser powers in the hybrid welding of AA5754 Al-alloy [J]. Materials & Design, 2014, 61: 191–198.

    Article  Google Scholar 

  3. ÇETINKAYA C, TEKELI S, KURTULUŞ O. The weldability of aluminium alloys and the effect of welding parameters on mechanical properties and micro structure [J]. Journal of Polytechnic, 2002, 5(4): 321–333. (in Turkish)

    Google Scholar 

  4. CAVALIERE P, NOBILE R, PANELLA F W, SQUILLACE A. Mechanical and microstructural behaviour of 2024–7075 aluminium alloy sheets joined by friction stir welding [J]. International Journal of Machine Tools and Manufacture, 2006, 46(6): 588–594.

    Article  Google Scholar 

  5. HAMED J A. Effect of welding heat input and post-weld aging time on microstructure and mechanical properties in dissimilar friction stir welded AA7075—AA5086 [J]. Transactions of Nonferrous Metals Society of China, 2017, 27(8): 1707–1715.

    Article  Google Scholar 

  6. SELVI S P, VISHVAKSENAN A, RAJASEKAR E. Cold metal transfer (CMT) technology — An overview [J]. Defence Technology, 2018, 14(1): 28–44.

    Article  Google Scholar 

  7. WANG Peng, HU Sheng-sun, SHEN Jun-qi, LIANG Ying. Characterization the contribution and limitation of the characteristic processing parameters in cold metal transfer deposition of an Al alloy [J]. Journal of Materials Processing Technology, 2017, 245: 122–133.

    Article  Google Scholar 

  8. AZAR A S. A heat source model for cold metal transfer (CMT) welding [J]. Journal of Thermal Analysis and Calorimetry, 2015, 122(2): 741–746.

    Article  Google Scholar 

  9. STANO S, PFEIFER T, RÖŻAŃSKI M. Modern technologies of welding aluminium and its alloys [J]. Welding International, 2014, 28(2): 91–99.

    Article  Google Scholar 

  10. KAH P, SUORANTA R, MARTIKAINEN J. Advanced gas metal arc welding processes [J]. The International Journal of Advanced Manufacturing Technology, 2013, 67(1–4): 655–674.

    Article  Google Scholar 

  11. RAJEEV G P, KAMARAJ M, BAKSHI S R. Al-Si-Mn alloy coating on aluminum substrate using cold metal transfer (CMT) welding technique [J]. The Journal of the Minerals, Metals & Materials Society, 2014, 66(6): 1061–1067.

    Article  Google Scholar 

  12. FENG Ji-cai, ZHANG Hong-tao, HE Peng. The CMT short-circuiting metal transfer process and its use in thin aluminium sheets welding [J]. Materials & Design, 2009, 30(5): 1850–1852.

    Article  Google Scholar 

  13. ZHANG C, LI G, GAO M, YAN J, ZENG X Y. Microstructure and process characterization of laser-cold metal transfer hybrid welding of AA6061 aluminum alloy [J]. The International Journal of Advanced Manufacturing Technology, 2013, 68(5–8): 1253–1260.

    Article  Google Scholar 

  14. LIN Jian, MA Nin-shu, LEI Yong-ping, MURAKAWA H. Shear strength of CMT brazed lap joints between aluminum and zinc-coated steel [J]. Journal of Materials Processing Technology, 2013, 213(8): 1303–1310.

    Article  Google Scholar 

  15. KANG Min-jung, KIM Cheol-hee. Joining Al 5052 alloy to aluminized steel sheet using cold metal transfer process [J]. Materials & Design, 2015, 81: 95–103.

    Article  Google Scholar 

  16. TOMA C, CICALA E, SALLAMAND P, GREVEY D. CMT Joining of aluminum magnesium alloys in a statistical experiment [C]//METAL 2012-Conference Proceedings, 21st International Conference on Metallurgy and Materials. 2012, 23: 1592–1600.

    Google Scholar 

  17. SUN Q J, LI J Z, LIU Y B, LI B P, XU P W, FENG J C. Microstructural characterization and mechanical properties of Al/Ti joint welded by CMT method—Assisted hybrid magnetic field [J]. Materials & Design, 2017, 116: 316–324.

    Article  Google Scholar 

  18. GUNGOR B, KALUC E, TABAN E, ŞIK A. Mechanical and microstructural properties of robotic cold metal transfer (CMT) welded 5083-H111 and 6082-T651 aluminum alloys [J]. Materials & Design, 2014, 54: 207–211.

    Article  Google Scholar 

  19. SRIKANTH T, SURENDRAN S, BALAGANESAN G, MANJUNATH G L. Response of CMT welded aluminum AA5086-H111 to AA6061-T6 plate with AA4043 filler for ballistic [J]. Procedia Engineering, 2017, 194: 522–528.

    Article  Google Scholar 

  20. ÖZSARAÇ U, UNAT M E, VAROL F, IŞIK Ş, ÖZDEMIR C, ASLANLAR S. Investigation of mechanical properties of aluminum 5754–7075 alloys joined by cold metal transfer by using different gas pressures [J]. International Journal of Computational and Experimental Science and Engineering, 2017, 3(2): 26–28.

    Google Scholar 

  21. MURARIU A C, PLESU N. Investigations on corrosion behaviour of welded joint in ASTM A355P5 alloy steel pipe [J]. International Journal of Electrochemical Science, 2015, 10: 10832–10846.

    Google Scholar 

  22. ANDREATTA F, TERRYN H, DE WIT J H. Corrosion behaviour of different tempers of AA7075 aluminium alloy [J]. Electrochimica Acta, 2004, 49(17, 18): 2851–2862.

    Article  Google Scholar 

  23. DURGUTLU A. Effect of argon-hydrogen mixture on the microstructure and mechanical properties of aluminum on TIG welding [J]. Journal of Polytechnic, 2007, 10(3): 271–276. (in Turkish)

    Google Scholar 

  24. SHANG Jing, WANG Ke-hong, ZHOU Qi, ZHANG De-ku, HUANG Jun, LI Guang-le. Microstructure characteristics and properties of Mg/Al dissimilar metals made by cold metal transfer welding with ER4043 filler metal [J]. Rare Metal Materials and Engineering, 2013, 42(7): 1337–1341.

    Article  Google Scholar 

  25. CAO R, YU G, CHEN J H, WANG P C. Cold metal transfer joining aluminum alloys-to-galvanized mild steel [J]. Journal of Materials Processing Technology, 2013, 213(10): 1753–1763.

    Article  Google Scholar 

  26. YANG Shang-lu, ZHANG Jing, LIAN Jin, LEI Yong-pin. Welding of aluminum alloy to zinc coated steel by cold metal transfer [J]. Materials & Design, 2013, 49: 602–612.

    Article  Google Scholar 

  27. MATHERS G. The welding of aluminium and its alloys [M]. Cambridge: Woodhead Publishing Limited, 2002.

    Book  Google Scholar 

  28. LUIJENDIJK T. Welding of dissimilar aluminium alloys [J]. Journal of Materials Processing Technology, 2000, 103(1): 29–35.

    Article  Google Scholar 

  29. KUMAR N P, VENDAN S A, SHANMUGAM N S. Investigations on the parametric effects of cold metal transfer process on the microstructural aspects in AA6061 [J]. Journal of Alloys and Compounds, 2016, 658: 255–264.

    Article  Google Scholar 

  30. WELLER D, SIMON J, STRITTA P, WEBER R, GRAF T, BEZENÇON C, BASSI C. Temperature controlled laser joining of aluminum to galvanized steel [J]. Physics Procedia, 2016, 83: 515–522.

    Article  Google Scholar 

  31. AHSAN M R, KIM Y R, ASHIRI R, CHO Y J, JEONG C, PARK Y D. Cold metal transfer (CMT) GMAW of zinc-coated steel [J]. Welding Journal, 2016, 95(4): 120–132.

    Google Scholar 

  32. AHSAN M R, KIM Y R, KIM C H, KIM J W, ASHIRI R, PARK Y D. Porosity formation mechanisms in cold metal transfer (CMT) gas metal arc welding (GMAW) of zinc coated steels [J]. Science and Technology of Welding & Joining, 2016, 21(3): 209–215.

    Article  Google Scholar 

  33. ZHANG Hong-yan, SENKARA J, WU Xin. Suppressing cracking in resistance welding AA5754 by mechanical means [J]. Journal of Manufacturing Science and Engineering, 2002, 124: 79–85.

    Article  Google Scholar 

  34. BOLOURI A, ZHAO Qin-fu, CÔTÉ P, CHEN X G. Microstructure and rheological properties of semi-solid 7075 slurries using SEED rheocasting process [J]. Solid State Phenomena, 2016, 256: 288–293.

    Article  Google Scholar 

  35. KASMAN Ş, YENIER Z. Analyzing dissimilar friction stir welding of AA5754/AA7075 [J]. The International Journal of Advanced Manufacturing Technology, 2014, 70(1–4): 145–156.

    Article  Google Scholar 

  36. BAHEMMAT P, HAGHPANAHI M, GIVI M K B, SEIGHALANI K R. Study on dissimilar friction stir butt welding of AA7075-O and AA2024-T4 considering the manufacturing limitation [J]. The International Journal of Advanced Manufacturing Technology, 2012, 59(9–12): 939–953.

    Article  Google Scholar 

  37. ÖZYÜREK D, YILMAZ R, KIBAR E. The effects of retrogression parameters in RRA treatment on tensile strength of 7075 aluminium alloys [J]. Journal of the Faculty of Engineering and Architecture of Gazi University, 2012, 27(1): 193–203. (in Turkish)

    Google Scholar 

  38. GHARAVI F, MATORI K A, YUNUS R, OTHMAN N K, FADAEIFARD F. Corrosion behavior of Al6061 alloy weldment produced by friction stir welding process [J]. Journal of Materials Research and Technology, 2015, 4(3): 1–9.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nilay Çömez.

Additional information

Foundation item: Project(215M623) supported by the Scientific and Technological Research Council of Turkey; Project(CBU-BAP 2015-130) supported by the Scientific Research Project Office of Manisa Celal Bayar University, Turkey

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çömez, N., Durmuş, H. Corrosion behavior and mechanical properties of cold metal transfer welded dissimilar AA7075-AA5754 alloys. J. Cent. South Univ. 27, 18–26 (2020). https://doi.org/10.1007/s11771-020-4274-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-020-4274-5

Key words

关键词

Navigation