Skip to main content
Log in

Zircon U-Pb-Hf isotopes and mineral chemistry of Early Cretaceous granodiorite in the Lunggar iron deposit in central Lhasa, Tibet Y, China

西藏中拉萨地块隆格尔铁矿床含矿花岗闪长岩锆石U-Pb-Hf 同位素和 矿物化学组分研究

  • Published:
Journal of Central South University Aims and scope Submit manuscript

An Erratum to this article was published on 01 March 2020

This article has been updated

Abstract

The Lunggar iron deposit belongs to the Bangong-Nujiang metallogenic belt and is located in central Lhasa on the Tibetan Plateau. In the Lunggar deposit, iron mineralization formed in the skarnization contact zone between the Early Cretaceous granodiorite and the late Permian Xiala Formation limestone. In this study, we achieved detailed zircon U-Pb-Hf isotopes and mineral chemistry for the Early Cretaceous granodiorite. Zircon U-Pb dating results indicate that the Early Cretaceous granodiorite emplaced at ca. 119 Ma. Based on the trace elements in zircons and the mineral chemical composition of amphibole and biotite, the Early Cretaceous granodiorite was believed to form under condition of high temperature (>700 °C), low pressure (100–400 MPa), and relatively high oxygen fugacity (lg/O2)(−13.6 to −13.9) and H2O content (4%–8%). Zircon trace elements, Hf isotope and biotite chemistry collectively reveal that significant juvenile mantle-derived magmas contributed to the source of the granodiorite. The relatively high log/O2 and shallow magma chamber are beneficial for skarn iron mineralization, implying remarkable potential for further prospecting in the Lunggar iron deposit.

摘要

隆格尔铁矿床隶属班公湖-怒江成矿带,位于青藏高原的中拉萨地块内。在隆格尔矿床中,铁 矿化发育于早白垩系花岗闪长岩和晚二叠系下拉组灰岩的矽卡岩化接触带上。本文报道了地早白垩系 花岗闪长岩(119 Ma)的锆石U-Pb-Hf 同位素和矿物化学组分特征。基于锆石微量元素和角闪石、黑云 母的化学组分,计算了岩体形成时的压力、温度、氧逸度和水成分。结果显示,早白垩系花岗闪长岩 形成于高温(>700 °C)、低压(100−100 MPa)、高氧逸度(−13.6∼−13.9)的环境中。锆石Hf 同位素和黑云 母化学组分显示,花岗闪长岩中有明显年轻幔源成分混入。较高的氧逸度和浅的形成环境有利于铁矿 化的形成,说明隆格尔铁矿床具有较好的找矿潜力。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 15 April 2020

    The article title was wrong and it should be replaced as follows: Zircon U-Pb-Hf isotopes and mineral chemistry of Early Cretaceous granodiorite in the Lunggar iron deposit in central Lhasa, Tibet, China

References

  1. ZHANG Y H, CAO H W, HOLLIS S P, TANG L, XU M, JIANG J S, GAO S B, WANG Y S. Geochronology, geochemistry and Sr-Nd-Pb-Hf isotopes of the Early Paleogene gabbro and granite from Central Lhasa, southern Tibet: Petrogenesis and tectonic implications [J]. International Geology Review, 2019, 61(7): 868–894.

    Article  Google Scholar 

  2. ZHENG Y C, FU Q, HOU Z Q, YANG Z S, HUANG K X, WU C D, SUN Q Z. Metallogeny of the northeastern Gangdese Pb-Zn-Ag-Fe-Mo-W polymetallic belt in the Lhasa terrane, southern Tibet [J]. Ore Geology Reviews, 2015, 70: 510–532.

    Article  Google Scholar 

  3. HOU Z Q, DUAN L F, LU Y J, ZHENG Y C, ZHU D C, YANG Z M, YANG Z S, WANG B D, PEI Y R, ZHAO Z D, MCCUAIG T C. Lithospheric Architecture of the Lhasa Terrane and its control on ore deposits in the Himalayan-Tibetan Orogen [J]. Economic Geology, 2015, 110(6): 1541–1575.

    Article  Google Scholar 

  4. WANG R, WEINBERG R F, COLLINS W J, RICHARDS J P, ZHU D C. Origin of postcollisional magmas and formation of porphyry Cu deposits in southern Tibet [J]. Earth-Science Reviews, 2018, 181: 122–143.

    Article  Google Scholar 

  5. SUN X, ZHENG Y Y, XU J, HUANG L H, GUO F, GAO S B. Metallogenesis and ore controls of Cenozoic porphyry Mo deposits in the gangdese belt of Southern Tibet [J]. Ore Geology Reviews, 2017, 81: 996–1014.

    Article  Google Scholar 

  6. DUAN J J, TANG J X, LIN B. Zinc and lead isotope signatures of the Zhaxikang PbZn deposit, South Tibet: Implications for the source of the ore-forming metals [J]. Ore Geology Reviews, 2016, 78: 58–68.

    Article  Google Scholar 

  7. CAO H W, HUANG Y, LI G M, ZHANG L K, WU J Y, DONG L, DAI Z W, LU L. Late Triassic sedimentary records in the northern Tethyan Himalaya: Tectonic link with Greater India [J]. Geoscience Frontiers, 2018, 9(1): 273–291.

    Article  Google Scholar 

  8. CAO H W, ZHANG Y H, SANSTOSH M, LI G M, HOLLIS S P, ZHANG L K, PEI Q M, TANG L, DUAN Z M. Petrogenesis and metallogenic implications of Cretaceous magmatism in Central Lhasa, Tibetan Plateau: A case study from the Lunggar Fe skarn deposit and perspective review [J]. Geological Journal, 2019, 54(4): 2323–2346.

    Article  Google Scholar 

  9. FEI F, YANG Z S, LIU Y C, ZHAO X Y, YU Y S. Petrogenetic epoch of the rock mass in the Lunggar iron deposit of Coqen County, Tibet [J]. Acta Petrologica et Mineralogica, 2015, 34: 568–580. (in Chinese)

    Google Scholar 

  10. PAN G T, WANG L Q, Li R S, YUAN S H, JI W H, YIN F G, ZHANG W P, WANG B D. Tectonic evolution of the Qinghai-Tibet Plateau [J]. Journal of Asian Earth Sciences, 2012, 53: 3–14.

    Article  Google Scholar 

  11. ZHU D C, ZHAO Z D, Niu Y L, MO X X, CHUNG S L, HOU Z Q, WANG L Q, WU F Y. The Lhasa Terrane: Record of a microcontinent and its histories of drift and growth [J]. Earth and Planetary Science Letters, 2011, 301(1, 2): 241–255.

    Article  Google Scholar 

  12. FOSTER M D. Interpretation of the composition of trioctahedral micas [J]. Geological Survey Professional Paper, 1960, 354: 11–49.

    Google Scholar 

  13. LEAKE B E, WOOLLEY A R, BIRCH W D, ERNST A J, FERRARIS G, GRICE J D, HAWTHORNE F C, KISCH H J, KRIVOVICHEV V G, SCUMACHER J C, STEPHENSON N C N, WHITTAKER E J W. Nomenclature of amphiboles: Additions and revisions to the International Mineralogical Association’s 1997 recommendations [J]. The Canadian Mineralogist, 2003, 41(6): 1355–1362.

    Article  Google Scholar 

  14. WIEDENBECK M, HANCHAR J M, PECK W H. Further characterisation of the 91500 zircon crystal [J]. Geostandards and Geoanalytical Research, 2004, 1: 9–39.

    Article  Google Scholar 

  15. LIU Y S, HU Z C, ZONG K Q, GAO C G, GAO S, XU J, CHEN H H. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS [J]. Chinese Science Bulletin, 2010, 55(15): 1535–1546.

    Article  Google Scholar 

  16. GAO Y, WEI R H, MA P X, HOU Z Q, YANG Z S. Post-collisional ultrapotassic volcanism in the Tangra Yumco-Xuruco graben, south Tibet: Constraints from geochemistry and Sr-Nd-Pb isotope [J]. Lithos, 2009, 110(1–4): 129–139.

    Article  Google Scholar 

  17. HOU K J, LI Y H, ZOU T R, QU X M, SHI Y R, XIE G Q. Laser ablation-MC-ICP-MS technique for Hf isotope microanalysis of zircon and its geological applications: Acta Petrologica Sinica, 2007, 23: 2595–2604. (in Chinese)

    Google Scholar 

  18. ELHLOU S, BELOUSOVA E, GRIFFIN W L, PEARSON W L, O’REiLLY S Y. Trace element and isotopic composition of GJ-red zircon standard by laser ablation [J]. Geochimica et Cosmochimica Acta, 2006, 70(18, Supplement): A158.

    Article  Google Scholar 

  19. CORFU F, HANCHAR J M, HOSKIN P W, KINNY P. Atlas of zircon textures [J]. Reviews in Mineralogy and Geochemistry, 2003, 53: 469–500.

    Article  Google Scholar 

  20. BLICHERT-TOFT J, ALBAREDE F. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system [J]. Earth and Planetary Science Letters, 1997, 148(1): 243–258.

    Article  Google Scholar 

  21. GRIFFIN W L, PEARSON N J, BELOUSOVA E, JACKSON S E, van ACHTERBERGH E, O’REILLY S Y, SHEE S R. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites-Kimberlites and related rocks [J]. Geochimica et Cosmochimica Acta, 2000, 64(1): 133–147.

    Article  Google Scholar 

  22. SÖDERLUND U, JONATHAN P P, VERVOORT J D, ISACHSEN C E. The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions [J]. Earth and Planetary Science Letters, 2004, 219(3, 4): 311–324.

    Article  Google Scholar 

  23. HOSKIN P W. Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia [J]. Geochimica Et Cosmochimica Acta, 2005, 69: 637–648.

    Article  Google Scholar 

  24. WANG Q, ZHU D C, ZHAO Z D, GUAN Q, ZHANG X Q, SUI Q L, MO X X. Magmatic zircons from I-, S- and A-type granitoids in Tibet: Trace element characteristics and their application to detrital zircon provenance study [J]. Journal of Asian Earth Sciences, 2012, 53: 59–66.

    Article  Google Scholar 

  25. GRIMES C B, WOODEN J L, CHEADLE M J, JOHN B E. “Fingerprinting” tectono-magmatic provenance using trace elements in igneous zircon [J]. Contributions to Mineralogy and Petrology, 2015, 170: 1–26.

    Article  Google Scholar 

  26. ESFAHANI M M, KHALILI M, BAKHSHI M. Petrogenesis of Soheyle-Pakuh and Golshekanan granitoid based on mineral chemistry of ferromagnesian minerals (north of Nain), Iran [J]. Journal of African Earth Sciences, 2017, 129: 973–986.

    Article  Google Scholar 

  27. LI X W, MO X X, SCHELTENS M, GUAN Q. Mineral chemistry and crystallization conditions of the Late Cretaceous Mamba pluton from the eastern Gangdese, Southern Tibetan Plateau [J]. Journal of Earth Science, 2016, 27(4): 545–570.

    Article  Google Scholar 

  28. ZHANG J Q, LI S R, SANTOSH M, WANG J Z, LI Q. Mineral chemistry of high-Mg diorites and skarn in the Han-Xing Iron deposits of South Taihang Mountains, China: Constraints on mineralization process [J]. Ore Geology Reviews, 2015, 64: 200–214.

    Article  Google Scholar 

  29. CAO H W, ZHANG Y H, SANTOSH M, ZHANG S T, TANG L, PEI Q M. Mineralogy, zircon U-Pb-Hf isotopes, and whole-rock geochemistry of Late Cretaceous-Eocene granites from the Tengchong terrane, western Yunnan, China: Record of the closure of the Neo-Tethyan Ocean [J]. Geological Journal, 2018, 53(4): 1423–1441.

    Article  Google Scholar 

  30. RIDOLFI F, RENZULLI A, PUERINI M. Stability and chemical equilibrium of amphibole in calc-alkaline magmas: an overview, new thermobarometric formulations and application to subduction-related volcanoes [J]. Contributions to Mineralogy and Petrology, 2010, 1: 45–66.

    Article  Google Scholar 

  31. HENRY D J, GUIDOTTI C V, THOMSON J A. The Ti-saturation surface for low-to-medium pressure metapelitic biotites: Implications for geothermometry and Ti-substitution mechanisms [J]. American Mineralogist, 2005, 2: 316–328.

    Article  Google Scholar 

  32. CHEN G Y, SUN D S, ZHOU X R, SHAO W, GONG R T, SHAO Y. Genetic mineralogy and gold mineralization of Guojialing granodiorite in Jiaodong region [M]. China University of Geosciences Press, 1993: 107–140. (in Chinese)

  33. ANDERSON J L, SMITH D R. The effects of temperature and fo2 on the Al-in-hornblende barometer [J]. American Mineralogist, 1995, 5–6: 549.

    Article  Google Scholar 

  34. TRAIL D, WATSON E B, TAILBY N D. The oxidation state of Hadean magmas and implications for early Earth’s atmosphere [J]. Nature, 2011, 480: 79–82.

    Article  Google Scholar 

  35. WONES D, EUGSTER H. Stability of biotite-Experiment theory and application [J]. American mineralogist, 1965, 9: 1228.

    Google Scholar 

  36. RICHARDS J P. The oxidation state, and sulfur and Cu contents of arc magmas: Implications for metallogeny [J]. Lithos, 2015, 233: 27–45.

    Article  Google Scholar 

  37. ZHOU Z X. The origin of instrusive mass in Fengshadong, Hubei Province [J]. Acta Petrologica Sinica, 1986, 2: 59–70. (in Chinese)

    Google Scholar 

  38. ABDELRAHMAN A. Nature of biotites from alkaline, calc-alkaline, and peraluminous magmas [J]. Journal of Petrology, 1994, 35(2): 1025–1029.

    Google Scholar 

  39. PIRAJNO F. Hydrothermal Processes and Mineral Systems [M]. Berlin: Springer. 2009.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling-ling Yuan  (袁玲玲).

Additional information

Foundation item: Project(2018YSJS14) supported by the Open Research Fund Program of Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring (Central South University), Ministry of Education, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Yh., Wang, Ys., Wang, Ws. et al. Zircon U-Pb-Hf isotopes and mineral chemistry of Early Cretaceous granodiorite in the Lunggar iron deposit in central Lhasa, Tibet Y, China. J. Cent. South Univ. 26, 3457–3469 (2019). https://doi.org/10.1007/s11771-019-4266-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-019-4266-5

Key words

关键词

Navigation