Skip to main content
Log in

Non-linear performance analysis and voltage control of MFC based on feedforward fuzzy logic PID strategy

基于前馈模糊逻辑PID 策略的MFC 电压控制和非线性性能分析

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Microbial fuel cell (MFC) is a kind of promising clean power supply energy equipment, but serious nonlinearities and disturbances exist when the MFC runs, and it is an important topic to guarantee that the output voltage reaches the setting value quickly and smoothly. Regulating the feeding flow is an effective way to achieve this goal, and especially, the satisfactory results can be achieved by regulating anode feeding flow. In this work, a feedforward fuzzy logic PID algorithm is proposed. The fuzzy logic system is introduced to deal with the non-linear dynamics of MFC, and corresponding PID parameters are calculated according to defuzzification. The magnitude value of the current density is used to simulate the value of the external load. The simulation results indicate that the MFC output voltage can track the setting value quickly and smoothly with the proposed feedforward fuzzy logic PID algorithm. The proposed algorithm is more efficient and robust with respect to anti-disturbance performance and tracking accuracy than other three control methods.

摘要

微生物燃料电池(MFC)是一种具有应用前景的清洁供电能源设备, 但在其运行过程中存在着严 重的非线性和干扰, 保证其输出电压快速、平稳地达到设定值是一个重要课题. 调节进料流量是实现 这一目标的有效途径, 特别是通过调节阳极进料流量可以达到满意的效果. 本文使用了一种前馈模糊 逻辑PID 算法, 引入模糊逻辑系统来处理MFC 的非线性动态特性, 并根据解模糊化原理计算出相应 的PID 参数. 电流密度的大小值用于模拟外部负载的大小. 仿真结果表明, 前馈模糊逻辑PID 方法能 够快速、平稳地跟踪设定值. 与其他三种控制方法相比, 该方法跟踪精度较佳, 抗负载突发干扰的能 力较强.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. KADIER A, KALIL M S, ABDESHAHIAN P, CHANDRASEKHAR K, MOHAMED A, AZMAN N F, LOGRONO W, SIMAYI Y, HAMID A A. Recent advances and emerging challenges in microbial electrolysis cells (MECs) for microbial production of hydrogen and value-added chemicals [J]. Renewable and Sustainable Energy Reviews, 2016, 61: 501–525.

    Article  Google Scholar 

  2. JAFARY T, DAUD W R W, GHASEMI M, KIM B H, MD JAHIM J, ISMAIL M, LIM S S. Biocathode in microbial electrolysis cell; present status and future prospects [J]. Renewable and Sustainable Energy Reviews, 2015, 47: 23–33.

    Article  Google Scholar 

  3. LOGAN B E, HAMELERS B, ROZENDAL R, SCHRÖDER U, KELLER J, FREGUIA S, AELTERMAN P, VERSTRAETE W, RABAEY K. Microbial fuel cells: Methodology and technology [J]. Environmental Science & Technology, 2006, 40(17): 5181–5192.

    Article  Google Scholar 

  4. BOGHANI H C, KIM J R, DINSDALE R M, GUWY A J, PREMIER G C. Analysis of the dynamic performance of a microbial fuel cell using a system identification approach [J]. Journal of Power Sources, 2013, 238: 218–226.

    Article  Google Scholar 

  5. LI Xiao-min, CHENG Ka-yu, WONG J W C. Bioelectricity production from food waste leachate using microbial fuel cells: Effect of NaCl and pH [J]. Bioresource Technology, 2013, 149: 452–458.

    Article  Google Scholar 

  6. LOGAN B, CHENG Shao-an, WATSON V, ESTADT G. Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells [J]. Environmental Science & Technology, 2007, 41(9): 3341–3346.

    Article  Google Scholar 

  7. DI LORENZO M, SCOTT K, CURTIS T P, HEAD I M. Effect of increasing anode surface area on the performance of a single chamber microbial fuel cell [J]. Chemical Engineering Journal, 2010, 156(1): 40–48.

    Article  Google Scholar 

  8. REN H, TORRES C I, PARAMESWARAN P, RITTMANN B E, CHAE J. Improved current and power density with a micro-scale microbial fuel cell due to a small characteristic length [J]. Biosensors and Bioelectronics, 2014, 61: 587–592.

    Article  Google Scholar 

  9. CHENG Shao-an, LOGAN B E. Increasing power generation for scaling up single-chamber air cathode microbial fuel cells [J]. Bioresource Technology, 2011, 102(6): 4468–4473.

    Article  Google Scholar 

  10. BOROLE A P, HAMILTON C Y, VISHNIVETSKAYA T, LEAK D, ANDRAS C. Improving power production in acetate-fed microbial fuel cells via enrichment of exoelectrogenic organisms in flow-through systems [J]. Biochemical Engineering Journal, 2009, 48(1): 71–80.

    Article  Google Scholar 

  11. BOGHANI H C, MICHIE I, DINSDALE R M, GUWY A J, PREMIER G C. Control of microbial fuel cell voltage using a gain scheduling control strategy [J]. Journal of Power Sources, 2016, 322: 106–115.

    Article  Google Scholar 

  12. BOGHANI H C, DINSDALE R M, GUWY A J, PREMIER G C. Sampled-time control of a microbial fuel cell stack [J]. Journal of Power Sources, 2017, 356: 338–347.

    Article  Google Scholar 

  13. LI Hui-min, WANG Xiao-bo, SONG Shang-bin, LI Hao. Vehicle control strategies analysis based on PID and fuzzy logic control [J]. Procedia Engineering, 2016, 137: 234–243.

    Article  Google Scholar 

  14. YAN Min-xiu, FAN Li-ping. Constant voltage output in two-chanber microbial fuel cell under fuzzy PID control [J]. International Journal of Electrochemical Science, 2013, 8: 3321–3332.

    Google Scholar 

  15. WANG Guan-wen, FENG Chun-hua. Electrochemical polymerization of hydroquinone on graphite felt as a pseudocapacitive material for application in a microbial fuel cell [J]. Polymers, 2017, 9(12): 220.

    Article  Google Scholar 

  16. LI Jing, LI Jie, LAI Yan-qing, SONG Hai-sheng, ZHANG Zhi-an, LIU Ye-xiang. Influence of KOH activation techniques on pore structure and electrochemical property of carbon electrode materials [J]. Journal of Central South University of Technology, 2006, 13(4): 360–366.

    Article  Google Scholar 

  17. LAI Bin, WANG Peng, LI Hao-ran, DU Zhu-wei, WANG Lijuan, BI Si-chao. Calcined polyaniline-iron composite as a high efficient cathodic catalyst in microbial fuel cells [J]. Bioresource Technology, 2013, 131: 321–324.

    Article  Google Scholar 

  18. OLIVEIRA V B, SIMÖES M, MELO L F, PINTO A M F R. A 1D mathematical model for a microbial fuel cell [J]. Energy, 2013, 61: 463–471.

    Article  Google Scholar 

  19. PINTO R P, SRINIVASAN B, MANUEL M F, TARTAKOVSKY B. A two-population bio-electrochemical model of a microbial fuel cell [J]. Bioresource Technology, 2010, 101(14): 5256–5265.

    Article  Google Scholar 

  20. BATSTONE D J, KELLER J, ANGELIDAKI I, KALYUZHNYI S V, PAVLOSTATHIS S G, ROZZI A, SANDERS W T M, SIEGRIST H, VAVILIN V A. The IWA anaerobic digestion model No 1 (ADM1) [J]. Water Science and Technology, 2002, 45(10): 65–73.

    Article  Google Scholar 

  21. CHEN Jia-yi, ZHAO Lin, LI Nan, LIU Hang. A microbial fuel cell with the three-dimensional electrode applied an external voltage for synthesis of hydrogen peroxide from organic matter [J]. Journal of Power Sources, 2015, 287: 291–296.

    Article  Google Scholar 

  22. ZENG Ying-zhi, CHOO Y F, KIM B H, WU Ping. Modeling and simulation of two-chamber microbial fuel cell [J]. Journal of Power Sources, 2010, 195(1): 79–89.

    Article  Google Scholar 

  23. VOJTESEK J, DOSTÁL P. Nostradamus 2014: Prediction, modeling and analysis of complex systems [M]. Cham: Springer International Publishing, 2014: 195–204.

    MATH  Google Scholar 

  24. AN Ai-min, LIU Yun-li, ZHANG Hao-chen, ZHENG Chen-dong, FU Juan. Dynamic performance analysis and neural network predictive control of microbial fuel cell [J]. CIESC Journal, 2017, 68: 1090–1098.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ai-min An  (安爱民).

Additional information

Foundation item: Project(61563032) supported by the National Natural Science Foundation of China; Project(18JR3RA133) supported by Gansu Basic Research Innovation Group, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, Qz., An, Am., Zhang, Hc. et al. Non-linear performance analysis and voltage control of MFC based on feedforward fuzzy logic PID strategy. J. Cent. South Univ. 26, 3359–3371 (2019). https://doi.org/10.1007/s11771-019-4259-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-019-4259-4

Key words

关键词

Navigation