Skip to main content
Log in

Surface integrity and flexural strength improvement in grinding partially stabilized zirconia

通过磨削提高部分稳定氧化锆的表面完整性和抗弯强度

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Zirconia has been used in medical applications since last few years and an optimum and cost-effective condition in grinding zirconia has drawn industrial attention. This paper aimed to improve and control the surface integrity, flexural strength and grinding cost in grinding partially stabilized zirconia (PSZ) using a diamond grinding wheel. The phase transition and grindability of PSZ were also evaluated. Ground surfaces analysis shows that all samples subjected to the grinding presented an increase in surface integrity, and the subsurface damages 100 below the surface were reduced from 3.4% to 0.9%. The flexural strength using 3 point bending test (3PB) shows that grinding increased the flexural strength more than 29% which is the result of higher surface integrity. The ground surfaces were analyzed using X-ray diffraction (XRD) and the results shows that T-M phase transition trend is in accordance with the surface integrity. In other words, XRD analyses prove that T-M phase transition results in higher flexural strength and surface integrity. It was also observed that in the best condition, the grinding cost was reduced by 72%. It can be concluded that controlling the grinding condition in grinding PSZ will result in the increase of the surface integrity and flexural strength. A mathematical model was created to find an optimum condition using response surface method (RSM). It is observed that feed rate has greater effect on the outputs rather than depth of cut.

摘要

近年来氧化锆一直被应用于医学领域,如何获得优化、低成本的氧化锆磨削条件引起了工业界 的关注。本文使用金刚石砂轮磨削部分稳定氧化锆(PSZ),以提高和控制其表面完整性、弯曲强度和 磨削成本,并研究PSZ 的相变和可研磨性。通过表面分析发现,所有经过磨削的样品表面完整性都有 所增加,表面下100 μm 的表面损伤从3.4%降到了0.9%。弯曲强度试验表明,弯曲强度提高了29% 以上,这是由于磨削获得了较高的表面完整性。用进行X RD 表面分析发现,T-M 相变趋势与表面完 整性一致,即T-M 相变可以提高弯曲强度和表面完整性。而且在最佳条件下,磨削成本降低了72%。 因此,控制磨削PSZ 中的磨削条件可以改善表面完整性和弯曲强度。利用响应表面法(RSM)建立数学 模型来获得最优条件,发现进给量对输出的影响大于切削深度。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. SIKALIDIS C. Advances in ceramics: electric and magnetic ceramics, bioceramics, ceramics and environment [M]. London: Intech Open Publication, 2011.

    Book  Google Scholar 

  2. NISTOR L, GRADINARU M, RICA R, MARASESCU P, STAN M, MANOLEA H, IONESCU A, MORARU I. Zirconia use in dentistry-manufacturing and properties [J]. Current Health Sciences Journal, 2019, 45(1): 28–35.

    Google Scholar 

  3. FLINN B D, RAIGRODSKI A J, MANCL L A, TOIVOLA R, KUYKENDALL T. Influence of aging on flexural strength of translucent zirconia for monolithic restorations [J]. The Journal of Prosthetic Dentistry, 2017, 117(2): 303–309. DOI: https://doi.org/10.1016/j.prosdent.2016.06.010.

    Article  Google Scholar 

  4. XU S, YAO Z, HE J, XU J. Grinding characteristics, material removal, and damage formation mechanisms of zirconia ceramics in hybrid laser/grinding [J]. Journal of Manufacturing Science and Engineering, 2018, 140(7): 071010. DOI: https://doi.org/10.1115/1.4039645.

    Article  Google Scholar 

  5. ANAND P S, ARUNACHALAM N, VIJAYARAGHAVAN L. Performance of diamond and SiC wheels on grinding of bioceramic material under MQL condition [J]. Journal of Manufacturing Science and Engineering, 2017, 139(12): 121019. DOI: https://doi.org/10.1115/1.4037940.

    Article  Google Scholar 

  6. YANG M, LI C, ZHANG Y, JIA D, LI R, HOU Y, CAO H. Effect of friction coefficient on chip thickness models in ductile-regime grinding of zirconia ceramics [J]. The International Journal of Advanced Manufacturing Technology, 2019, 102: 2617–2632. DOI: https://doi.org/10.1007/s00170-019-03367-0.

    Article  Google Scholar 

  7. NIKZAD S, AZARI A, NIKAN S, BAHRANI Z. Current status of zirconia in dentistry: An overview [J]. Journal of Dental Medicine, 2014, 27(3): 223–232.

    Google Scholar 

  8. ADÁNEZ M H, NISHIHARA H, ATT W. A systematic review and meta-analysis on the clinical outcome of zirconia implant-restoration complex [J]. Journal of Prosthodontic Research, 2018, 62(4): 397–406. DOI: https://doi.org/10.1016/j.jpor.2018.04.007.

    Article  Google Scholar 

  9. GEHRKE S A, da SILVA P M, GUIRADO J L, DELGADORUIZ R A, DEDAVID B A, NAGASAWA M A, SHIBLI J A. Mechanical behavior of zirconia and titanium abutments before and after cyclic load application [J]. The Journal of Prosthetic Dentistry, 2016, 116(4): 529–535. DOI: https://doi.org/10.1016/j.prosdent.2016.02.015.

    Article  Google Scholar 

  10. SHAHRAMIAN K, LEMINEN H, MERETOJA V, LINDERBÄCK P, KANGASNIEMI I, LASSILA L, NÄRHI T. Sol-gel derived bioactive coating on zirconia: Effect on flexural strength and cell proliferation [J]. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2017, 105(8): 2401–2407. DOI: https://doi.org/10.1002/jbm.b.33780.

    Article  Google Scholar 

  11. REED J S, ANNE-MARIE L. Affect of grinding and polishing on near-surface phase transformations in zirconia [J]. Materials Research Bulletin, 1977, 12(10): 949–954. DOI: https://doi.org/10.1016/0025-5408(77)90017-4.

    Article  Google Scholar 

  12. OZER F, NADEN A, TURP V, MANTE F, SEN D, BLATZ M B. Effect of thickness and surface modifications on flexural strength of monolithic zirconia [J]. The Journal of Prosthetic Dentistry, 2018, 119(6): 987–993. DOI: https://doi.org/10.1016/j.prosdent.2017.08.007.

    Article  Google Scholar 

  13. XU S, YAO Z, CAI H, WANG H. An experimental investigation of grinding force and energy in laser thermal shock-assisted grinding of zirconia ceramics [J]. The International Journal of Advanced Manufacturing Technology, 2017, 91(9–12): 3299–3306. DOI: https://doi.org/10.1007/s00170-017-0013-y.

    Article  Google Scholar 

  14. POLLI G S, HATANAKA G R, de OLIVEIRA A F, de SOUZA G M, REIS J M. Fatigue behavior and surface characterization of a Y-TZP after laboratory grinding and regeneration firing [J]. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 88: 305–312. DOI: https://doi.org/10.1016/j.jmbbm.2018.08.019.

    Article  Google Scholar 

  15. NIE Zhen-guo, WANG Gang, JIANG Feng, LIN Yong-liang, RONG Yi-ming. Investigation of modeling on single grit grinding for martensitic stainless steel [J]. Journal of Central South University, 2018, 25(8): 1862–1869. DOI: https://doi.org/10.1007/s11771-018-3875-8.

    Article  Google Scholar 

  16. ZHAO Pei-yi, ZHOU Ming, ZHANG Yuan-jing, QIAO Guo-chao. Surface roughness prediction model in ultrasonic vibration assisted grinding of BK7 optical glass [J]. Journal of Central South University, 2018, 25(2): 277–286. DOI: https://doi.org/10.1007/s11771-018-3736-5.

    Article  Google Scholar 

  17. CHEN Jiang, ZHAO Hang, ZHANG Fei-hu, ZHANG Yuan-jing, ZHANG Yong. Mechanism underlying formation of SSC in optical glass due to dynamic impact of single diamond scratch [J]. Journal of Central South University, 2015, 22(11): 4146–4153. DOI: https://doi.org/10.1007/s11771-015-2961-4.

    Article  Google Scholar 

  18. WANG Hong-xiang, HOU Jing, WANG Jing-he, ZHU Ben-wen, ZHANG Yan-hu. Experimental investigation of subsurface damage depth of lapped optics by fluorescent method [J]. Journal of Central South University, 2018, 25(7): 1678–1689. DOI: https://doi.org/10.1007/s11771-018-3859-8.

    Article  Google Scholar 

  19. LI P, JIN T, GUO Z, YI J, QU M. Analysis on the effects of grinding wheel speed on removal behavior of brittle optical materials [J]. Journal of Manufacturing Science and Engineering, 2017, 139(3): 031014. DOI: https://doi.org/10.1115/1.4034665.

    Article  Google Scholar 

  20. ZUCUNI C P, DAPIEVE K S, RIPPE M P, PEREIRA G K, BOTTINO M C, VALANDRO L F. Influence of finishing/polishing on the fatigue strength, surface topography, and roughness of an yttrium-stabilized tetragonal zirconia polycrystals subjected to grinding [J]. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 93: 222–229. DOI: https://doi.org/10.1016/j.jmbbm.2019.02.013.

    Article  Google Scholar 

  21. BECHCINSKI G, EWAD H, TSIAKOUMIS V, PAWLOWSKI W, KEPCZAK N, MCMILLAN A, BATAKO A D. A model and application of vibratory surface grinding [J]. Journal of Manufacturing Science and Engineering, 2018, 140(10): 101011. DOI: https://doi.org/10.1115/1.4040725.

    Article  Google Scholar 

  22. SOLHTALAB A, ADIBI H, ESMAEILZARE A, REZAEI S M. Cup wheel grinding-induced subsurface damage in optical glass BK7: An experimental, theoretical and numerical investigation [J]. Precision Engineering, 2019. DOI: https://doi.org/10.1016/j.precisioneng.2019.04.003.

    Article  Google Scholar 

  23. ABOUSHELIB M N, SALEM N A, TALEB A L, el MONIEM N M. Influence of surface nano-roughness on osseointegration of zirconia implants in rabbit femur heads using selective infiltration etching technique [J]. Journal of Oral Implantology, 2013, 39(5): 583–590. DOI: https://doi.org/10.1563/AAID-JOI-D-11-00075.

    Article  Google Scholar 

  24. KHALILI M R, ZIAIE B, KAZEMI M. Finite element analysis for dental implants subjected to thermal loads [J]. Journal of Dental Medicine, 2013, 26(4): 270–280.

    Google Scholar 

  25. GITTENS R A, OLIVARES-NAVARRETE R, TANNENBAUM R, BOYAN B D, SCHWARTZ Z. Electrical implications of corrosion for osseointegration of titanium implants [J]. Journal of Dental Research, 2011, 90(12): 1389–1397. DOI: https://doi.org/10.1177/0022034511408428.

    Article  Google Scholar 

  26. WNEK G E, BOWLIN G L. Encyclopedia of biomaterials and biomedical engineering [M]. 2nd ed. New York: Taylor and Francis, 2014.

    Google Scholar 

  27. LI Z, ZHENG K, LIAO W, XIAO X. Surface characterization of zirconia ceramics in ultrasonic vibration-assisted grinding [J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2018, 40(8): 1–9. DOI: https://doi.org/10.1007/s40430-018-1296-0.

    Article  Google Scholar 

  28. LEE D H, MAI H N, THANT P P, HONG S H, KIM J, JEONG S M, LEE K W. Effects of different surface finishing protocols for zirconia on surface roughness and bacterial biofilm formation [J]. The Journal of Advanced Prosthodontics, 2019, 11(1): 41–47. DOI: https://doi.org/10.4047/jap.2019.11.1.41.

    Article  Google Scholar 

  29. STRICKSTROCK M, ROTHE H, GROHMANN S, HILDEBRAND G, ZYLLA I M, LIEFEITH K. Influence of surface roughness of dental zirconia implants on their mechanical stability, cell behavior osseointegration [J]. Bio Nano Materials, 2017, 18(1–2). DOI: https://doi.org/10.1515/bnm-2016-0013.

  30. GARVIE R, HANNINK R, PASCOE R. Ceramic steel? [J], Nature, 1975, 258: 703–704. DOI: https://doi.org/10.1038/258703a0.

    Article  Google Scholar 

  31. XU H, SAID J, LEWIS K I. Effect of grinding on strength of tetragonal zirconia and zirconia-toughened alumina [J]. Machining Science and Technology, 1997, 1(1): 49–66. DOI: https://doi.org/10.1080/10940349708945637

    Article  Google Scholar 

  32. SHIH A J, GRANT M B, YONUSHONIS T M, MORRIS T O, MCSPADDEN S B. Vitreous bond CBN wheel for high speed grinding of zirconia and M2 tool steel [J]. Transactions-North American Manufacturing Research Institution of SME, 1998: 195–200.

  33. CURRY A C, SHIH A J, KONG J, SCATTERGOOD R O, MCSPADDEN S B. Grinding temperature measurements in magnesia partially stabilized zirconia using infrared spectrometry [J]. Journal of the American Ceramic Society, 2003, 86(2): 333–341. DOI: https://doi.org/10.1111/J.1151-2916.2003.tb00019.x.

    Article  Google Scholar 

  34. IŞERI U, ÖZKURT Z, KAZAZOĞLU E, KÜÇÜKOĞLU D. Influence of grinding procedures on the flexural strength of zirconia ceramics [J]. Brazilian Dental Journal, 2010, 21(6): 528–532. DOI: https://doi.org/10.1590/S0103-64402010000600008

    Article  Google Scholar 

  35. CHEN J, SHEN J, HUANG H, XU X. Grinding characteristics in high speed grinding of engineering ceramics with brazed diamond wheels [J]. Journal of Materials Processing Technology, 2010, 210(6): 899–906. DOI: https://doi.org/10.1016/j.jmatprotec.2010.02.002.

    Article  Google Scholar 

  36. YANG M, LI C, ZHANG Y, JIA D, ZHANG X, HOU Y, LI R, WANG J. Maximum undeformed equivalent chip thickness for ductile-brittle transition of zirconia ceramics under different lubrication conditions [J]. International Journal of Machine Tools and Manufacture, 2017, 122: 55–65. DOI: https://doi.org/10.1016/j.ijmachtools.2017.06.003.

    Article  Google Scholar 

  37. QEBLAWI D M, MUÑOZ C A, BREWER J D, MONACO E A Jr. The effect of zirconia surface treatment on flexural strength and shear bond strength to a resin cement [J]. The Journal of Prosthetic Dentistry, 2010, 103(4): 210–220. DOI: https://doi.org/10.1016/S0022-3913(10)60033-9.

    Article  Google Scholar 

  38. le GUÉHENNEC L, SOUEIDAN A, LAYROLLE P, AMOURIQ Y. Surface treatments of titanium dental implants for rapid osseointegration [J]. Dental Materials, 2007, 23(7): 844–854. DOI: https://doi.org/10.1016/j.dental.2006.06.025.

    Article  Google Scholar 

  39. ANAND P, ARUNACHALAM N, VIJAYARAGHAVAN L. Grinding behavior of yttrium partially stabilized zirconia using diamond grinding wheel [J]. Advanced Materials Research, 2016, 1136: 15–20. DOI: https://doi.org/10.4028/www.scientific.net/AMR.806.15.

    Article  Google Scholar 

  40. MALKIN S, GUO C. Grinding technology: Theory and application of machining with abrasives. [M]. New York: Industrial Press Inc., 2008.

    Google Scholar 

  41. SUZUKI K, UEMATSU T, NAKAGAWA T. On-machine trueing/dressing of metal bond grinding wheels by electro-discharge machining [J]. CIRP Annals, 1987, 36(1): 115–118. DOI: https://doi.org/10.1016/S0007-8506(07)62566-9.

    Article  Google Scholar 

  42. HOSOKAWA A, UEDA T, YUNOKI T. Laser dressing of metal bonded diamond wheel [J]. CIRP Annals, 2006, 55(1): 329–332. DOI: https://doi.org/10.1016/S0007-8506(07)60428-4.

    Article  Google Scholar 

  43. KOPAC J, KRAJNIK P. High-performance grinding—A review [J]. Journal of Materials Processing Technology, 2006, 175(1): 278–284. DOI: https://doi.org/10.1016/j.jmatprotec.2005.04.010.

    Article  Google Scholar 

  44. CHUSOVITINA T V, YU S. TOROPOV, TRETNIKOVA M G. Properties of ceramics based on zirconia partly stabilized with yttrium concentrate [J]. Refractories and Industrial Ceramics, 1991, 32(5): 277–279. DOI: https://doi.org/10.1007/BF01290392.

    Google Scholar 

  45. ISO14704. Fine Ceramics (Advanced Ceramics, Advanced Technical Ceramics)—Test Method for Flexural Strength of Monolithic Ceramics at Room Temperature. International Organization for Standards, Geneva, Switzerland, 2008 [S].

  46. ICHIDA Y. Creep feed profile grinding of Ni-based superalloys with ultrafine-polycrystalline CBN abrasive grits [J]. Precision Engineering, 2001, 25(4): 274–283. DOI: https://doi.org/10.1016/S0141-6359(01)00078-2.

    Article  Google Scholar 

  47. PLATT A, FRANKEL P, GASS M, HOWELLS R, PREUSS M. Finite element analysis of the T-M phase transformation during oxidation of zirconium alloys [J]. Journal of Nuclear Materials, 2014, 454(1–3): 290–292. DOI: https://doi.org/10.1016/j.jnucmat.2014.08.020.

    Article  Google Scholar 

Download references

Acknowledgements

This project is supported by the Centre of Advanced Manufacturing and Material Processing of University of Malaya.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Mehdi Rezaei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khodaii, J., Barazandeh, F., Rezaei, S.M. et al. Surface integrity and flexural strength improvement in grinding partially stabilized zirconia. J. Cent. South Univ. 26, 3261–3278 (2019). https://doi.org/10.1007/s11771-019-4251-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-019-4251-z

Key words

关键词

Navigation