Skip to main content
Log in

Tribological behavior of Cu-15Ni-8Sn/graphite under sea water, distilled water and dry-sliding conditions

Cu-15Ni-8Sn/石墨复合材料在海水、去离子水和干摩擦中的摩擦学行为研究

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The tribological behaviors of Cu-15Ni-8Sn/graphite composites with the graphite content of 38 vol.% against AISI321 stainless steel under dry-sliding, deionized water and sea water were investigated on a block-on-ring configuration. The results indicated that the friction coefficient was the lowest under dry-sliding, and the highest in deionized water. The wear rate decreased to reach the minimum value of 1.39×10-15 m3/(Nm) in sea water and in deionized water, it increased to the maximum value of 5.56×10-15 m3/(Nm). The deionized water hindered the formation of tribo-oxide layer and lubricating film, which resulted in the largest friction coefficient and wear rate. In sea water, however, the corrosion products comprised of oxides, hydroxides and chlorides were found on the worn surface, and the compacted layer composed of corrosion products and graphite played an important role in keeping the excellent wear resistance. It was elucidated that the tribological behaviors of Cu-15Ni-8Sn/graphite composite were powerful influenced by the friction environments.

摘要

本文选取AISI321 不锈钢作为对偶材料,研究Cu-15Ni-8Sn/石墨复合材料(石墨含量为38 vol%) 在干摩擦、去离子水与海水三种环境中的摩擦学行为,该实验在环块式摩擦试验机上进行。结果表明: Cu-15Ni-8Sn/石墨复合材料的摩擦系数在干摩擦时最小,在去离子水中最大;此外,海水中该复合材 料的磨损率达到最小值,即1.39×10−15 m3/(N·m),在去离子水中,其磨损率增加到5.56×10−15 m3/(N·m), 达到最大值。这表明去离子水阻碍了摩擦氧化层与润滑膜的形成,导致Cu-15Ni- 8Sn/石墨复合材料表 现出较大的摩擦系数与磨损率。在海水环境中该复合材料磨损表面形成的腐蚀产物主要包括氧化物、 氢氧化物与氯化物,且该腐蚀产物与石墨构成的压实层在保持优异的耐磨性能方面具有至关重要的作 用。研究结果表明,摩擦环境显著影响Cu-15Ni-8Sn/石墨复合材料的摩擦学行为。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. RAJKUMAR K, ARAVINDAN S. Tribological behavior of microwave processed copper-nanographite composites [J]. Tribology International, 2013, 57: 282–296.

    Article  Google Scholar 

  2. JIN K J, QIAO Z H, ZHU S Y, CHENG J, YIN B, YANG J. Friction and wear properties and mechanism of bronze-CrAg composites under dry-sliding conditions [J]. Tribology International, 2016, 96: 132–140.

    Article  Google Scholar 

  3. SINGH M K, GAUTAM R K. Mechanical and tribological properties of plastically deformed copper metal matrix nano composite [J]. Materials Today: Proceedings, 2018, 5: 5727–5736.

    Google Scholar 

  4. HUANG Z X, ZHENG Z, ZHAO S, DONG S J, LUO P, CHEN L. Copper matrix composites reinforced by aligned carbon nanotubes: Mechanical and tribological properties [J]. Materials & Design, 2017, 133: 570–578.

    Article  Google Scholar 

  5. ZHOU J, MA C, KANG X, ZHANG L, LIU X L. Effect of WS2 particle size on mechanical properties and tribological behaviors of Cu-WS2 composites sintered by SPS [J]. Transactions of Nonferrous Metals Society of China, 2018, 28: 1176–1185.

    Article  Google Scholar 

  6. CUI G J, BI Q L, NIU M Y, YANG J, LIU W M. The tribological properties of bronze-SiC-graphite composites under sea water condition [J]. Tribology International, 2013, 60: 25–35.

    Article  Google Scholar 

  7. CHEN B M, BI Q L, YANG J, XIA Y Q, HAO J C. Tribological properties of solid lubricants (graphite, h-BN) for Cu-based P/M friction composites [J]. Tribology International, 2008, 41: 1145–1152.

    Article  Google Scholar 

  8. MAI Y J, CHEN F X, LIAN W Q, ZHANG L Y, LIU C S, JIE X H. Preparation and tribological behavior of copper matrix composites reinforced with nickel nanoparticles anchored graphene nanosheets [J]. Journal of Alloys and Compounds, 2018, 756: 1–7.

    Article  Google Scholar 

  9. GAO X, YUE H Y, GUO E J, ZHANG S L, YAO L H, LIN X Y, WANG B, GUAN E H. Tribological properties of copper matrix composites reinforced with homogeneously dispersed graphene nanosheets [J]. Journal of Materials Science & Technology, 2018, 34: 1925–1931.

    Article  Google Scholar 

  10. CRIBB W R, RATKA J O. Copper spinodal alloys [J]. Advanced Materials & Processes, 2002, 160: 27–30.

    Google Scholar 

  11. ZHANG S H, GAN X P, CHENG J J, JIANG Y X, LI Z, ZHOU K C. Effect of applied load on the transition behavior of wear mechanism in the Cu-15Ni-8Sn alloy under oil lubrication [J]. Journal of Central South University, 2017, 24(8): 1754–1761.

    Article  Google Scholar 

  12. KESTURSATYA M, KIM J K, ROHATGI P K. Wear performance of copper-graphite composite and a leaded copper alloy [J]. Materials Science & Engineering A, 2003, 339: 150–158.

    Article  Google Scholar 

  13. KATO H, TAKAMA M, IWAI Y, WASHIDA K, SASAKI Y. Wear and mechanical properties of sintered copper-tin composites containing graphite or molybdenum disulfide [J]. Wear, 2003, 255: 573–578.

    Article  Google Scholar 

  14. JIA J H, CHEN J M, ZHOU H D, WANG J B, ZHOU H. Friction and wear properties of bronze-graphite composite under water lubrication [J]. Tribology International, 2004, 37: 423–429.

    Article  Google Scholar 

  15. CUI G J, BI Q L, ZHU S Y, YANG J, LIU W M. Tribological properties of bronze-graphite composites under sea water condition [J]. Tribology International, 2012, 53: 76–86.

    Article  Google Scholar 

  16. CHEN J, WANG J Z, CHEN B B, YAN F Y. Tribocorrosion behaviors of inconel 625 alloy sliding against 316 steel in sea water [J]. Tribology Transactions, 2011, 54: 514–522.

    Article  Google Scholar 

  17. TAO S, LI D Y. Investigation of corrosion-wear synergistic attack on nano-crystalline Cu deposits [J]. Wear, 2007, 263: 363–370.

    Article  Google Scholar 

  18. WANG Y, ZHANG L, XIAO J K, CHEN W, FENG C F, GAN X P, ZHOU K C. The tribo-corrosion behavior of Cu-9wt%Ni-6wt%Sn alloy [J]. Tribology International, 2016, 94: 260–268.

    Article  Google Scholar 

  19. CUI G J, BI Q L, ZHU S Y, FU L C, YANG J, QIAO Z H, LIU W M. Synergistic effect of alumina and graphite on bronze matrix composites: Tribological behaviors in sea water [J]. Wear, 2013, 303: 216–224.

    Article  Google Scholar 

  20. FENG C F, WANG Y, CHEN W, ZHANG L, ZHOU K C. The mechanical mixed layer and its role in Cu-15Ni-8Sn/graphite composites [J]. Tribology Transactions, 2017, 60: 135–145.

    Article  Google Scholar 

  21. ZHANG L, XIAO J K, ZHOU K C. Sliding wear behavior of silver-molybdenum disulfide composite [J]. Tribology Transactions, 2012, 55(4): 473–480.

    Article  Google Scholar 

  22. LI X Q, GAO Y M, SONG L C, YANG Q X, WEI S Z, YOU L, ZHOU Y C, ZHANG G S, XU L J, YANG B. Influences of hBN content and test mode on dry sliding tribological characteristics of B4C-hBN ceramics against bearing steel [J]. Ceramics International, 2018, 44: 6443–6450.

    Article  Google Scholar 

  23. CUI G J, BI Q L, ZHU S Y, YANG J, LIU W M. Tribological behavior of Cu-6Sn-6Zn-3Pb under sea water, distilled water and dry-sliding conditions [J]. Tribology International, 2012, 55: 126–134.

    Article  Google Scholar 

  24. LI X Q, GAO Y M, WEI S Z, YANG Q X. Tribological behaviors of B4C-hBN ceramic composites used as pins or discs coupled with B4C ceramic under dry sliding condition [J]. Ceramics International, 2017, 43: 1578–1583.

    Article  Google Scholar 

  25. LI X Q, GAO Y M, WEI S Z, YANG Q X, ZHONG Z C. Dry sliding tribological properties of self-mated couples of B4C-hBN ceramic composites [J]. Ceramics International, 2017, 43: 162–166.

    Article  Google Scholar 

  26. STOTT F H. The role of oxidation in the wear of alloys [J]. Tribology International, 1998, 31: 61–71.

    Article  Google Scholar 

  27. MCINTYRE N S, COOK M G. X-ray photoelectron studies on some oxides and hydroxides of cobalt, nickel, and copper [J]. Analytical Chemistry, 1975, 47: 2208–2213.

    Article  Google Scholar 

  28. POULSTON S, PARLETT P M, STONE P, BOWKER M. Surface oxidation and reduction of CuO and Cu2O studied using XPS and XAES [J]. Surface & Interface Analysis, 1996, 24: 811–820.

    Article  Google Scholar 

  29. LIU T, CHEN S G, CHENG S, TIAN J T, CHANG X T, YIN Y S. Corrosion behavior of super-hydrophobic surface on copper in seawater [J]. Electrochimica Acta, 2007, 52: 8003–8007.

    Article  Google Scholar 

  30. KEAR G, BARKER B D, WALSH F C. Electrochemical corrosion of unalloyed copper in chloride media-A critical review [J]. Corrosion Science, 2004, 46: 109–135.

    Article  Google Scholar 

  31. SANDBERG J, WALLINDER I O, LEYGRAF C, BOZEC N L. Corrosion-induced copper run off from naturally and pre-patinated copper in a marine environment [J]. Corrosion Science, 2006, 48: 4316–4338.

    Article  Google Scholar 

  32. TAYLOR J A, LANCASTER G M, RABALAIS J W. Chemical reactions of N2+ ion beams with group IV elements and their oxides [J]. Journal of Electron Spectroscopy & Related Phenomena, 1978, 13: 435–444.

    Article  Google Scholar 

  33. ROBBIOLA L, TRAN T T M, DUBOT P, MAJERUS O, RAHMOUNI K. Characterization of anodic layers on Cu-10Sn bronze (RDE) in aerated NaCl solution [J]. Corrosion Science, 2008, 50: 2205–2215.

    Article  Google Scholar 

  34. ANTONIJEVIC M M, MILIC S M, PETROVIC M B. Films formed on copper surface in chloride media in the presence of azoles [J]. Corrosion Science, 2009, 51: 1228–1237.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Zhang  (张雷).

Additional information

Foundation item: Project(51674304) supported by the National Natural Science Foundation of China; Project(19B430013) supported by the Key Scientific Research Projects of Higher Education Institutions in Henan Province, China; Project(2017BSJJ013) supported by the Doctor Research Foundation of Zhengzhou University of Light Industry, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Zhang, L., Zhai, Hf. et al. Tribological behavior of Cu-15Ni-8Sn/graphite under sea water, distilled water and dry-sliding conditions. J. Cent. South Univ. 26, 2623–2633 (2019). https://doi.org/10.1007/s11771-019-4199-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-019-4199-z

Key words

关键词

Navigation